Trending machine learning models in cyber‐physical building environment: A survey.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Subject Terms:
    • Abstract:
      Electricity usage of buildings (including offices, malls, and residential apartments) represents a significant portion of a nation's energy expenditure and carbon footprint. In the United States, the buildings' appliances consume 72% of the total produced electricity approximately. In this regard, cyber‐physical system (CPS) researchers have put forth associated research questions to reduce cyber‐physical building environment energy consumption by minimizing the energy dissipation while securing occupants' comfort. Some of the questions in CPS building include finding the optimal HVAC control, monitoring appliances' energy usage, detecting insulation problems, estimating the occupants' number and activities, managing thermal comfort, intelligently interacting with the smart grid. Various machine learning (ML) applications have been studied in recent CPS researches to improve building energy efficiency by addressing these questions. In this paper, we comprehensively review and report on the contemporary applications of ML algorithms such as deep learning, transfer learning, active learning, reinforcement learning, and other emerging techniques that propose and envision to address the above challenges in the CPS building environment. Finally, we conclude this article by discussing diverse existing open questions and prospective future directions in the CPS building environment research. This article is categorized under:Technologies > Machine LearningTechnologies > Reinforcement Learning [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of WIREs: Data Mining & Knowledge Discovery is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)