Comparison of chemokine and receptor gene expression between Wharton's jelly and bone marrow-derived mesenchymal stromal cells.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      Background aims. Because of their multilineage differentiation capacity, immunomodulatory role and homing ability, mesenchymal stromal cells (MSC) are emerging as a new therapeutic strategy for treating a variety of disorders. Although bone marrow (BM) is the best characterized source of MSC, Wharton's jelly (WJ) of the umbilical cord holds great promise as an alternative. As delivery direct to the site of injury is not always feasible, efficient homing of MSC to the site of injury is critical for inducing tissue repair and regeneration. MSC express a wide variety of growth factors, chemokines and receptors that are important for cell migration, homing and re-establishment of blood supply for recovery of damaged tissues. Methods. Detailed chemokine and receptor gene expression profiles of WJ MSC were established, and subsequently compared with those of BM-derived MSC using a polymerase chain reaction (PCR) array. Secretion of growth factors was analyzed and evaluated using culture supernatant from WJ and BM MSC. Results. Our results revealed a differential expression pattern of the chemokines and their receptors between WJ- and BM-derived MSC. Several Glutamic acid-Leucine-Arginine; ELR-positive CXC chemokine genes and secretion of growth factors, which promote angiogenesis, were found to be up-regulated in WJ MSC. Conclusions. To understand better the localization and mechanism of tissue repair by transplanted WJ MSC, we attempted chemokine and their receptor transcription profiling, followed by analysis of growth factors secreted by WJ MSC, and compared them against those of BM MSC. The data suggest that MSC from different sources can be explored for distinct therapeutic roles. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Cytotherapy (Taylor & Francis Ltd) is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)