Effects of loading rate on strength of the proximal femur.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      Results from previous quasi-static mechanical tests indicate that femurs from elderly subjects fail in vitro at forces 50% below those available in a fall from standing height. However, bone is a rate-dependent material, and it is not known whether this imbalance is present at rates of loading which occur in a fall. Based on recent data on time to peak force and body positions at impact during simulated falls, we designed a high rate test of the femur in a loading configuration meant to represent a fall on the hip. We used elderly (mean age 73.5 +/- 7.4 (SD) years) and younger adult (32.7 +/- 12.8 years) cadaveric femurs to investigate whether (1) the strength, stiffness, and energy absorption capacity of the femur increases under high rate loading conditions; (2) elderly femurs have reduced strength, stiffness, and energy absorption capacity compared with younger adult femurs at this loading rate; and (3) densitometric and geometric measures taken at the hip correlate with the measured fracture loads. Femurs were scanned using dual-energy X-ray absorptiometry (DXA) and then tested to failure in a fall loading configuration at a displacement rate of 100 mm/second. The fracture load in elderly and younger adult femurs increased by about 20% with a 50-fold increase in displacement rate. However, energy absorption did not increase with displacement rate because of a twofold increase in stiffness at the higher loading rate.(ABSTRACT TRUNCATED AT 250 WORDS) [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Calcified Tissue International is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)