Modelling the effect of carbon on deformation behaviour of twinning induced plasticity steels.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      In this article, a physical model describing the deformation behaviour of Twinning Induced Plasticity (TWIP) steels has been extended to include the effect of carbon content. The experimental validation and the analysis show that carbon mainly controls the maximum number of dislocations piled up at the twin boundary, resulting in the increase of back-stresses (i.e. kinematic hardening) and therefore the work hardening rate. This explanation seems to be in agreement with recent TEM observations. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Journal of Materials Science is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)