Interleukin-17 Expression Positively Correlates with Disease Severity of Lupus Nephritis by Increasing Anti-Double-Stranded DNA Antibody Production in a Lupus Model Induced by Activated Lymphocyte Derived DNA.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      Lupus nephritis is one of the most serious manifestations and one of the strongest predictors of a poor outcome in systemic lupus erythematosus (SLE). Recent evidence implicated a potential role of interlukin-17 (IL-17) in the pathogenesis of lupus nephritis. However, the correlation between IL-17 expression level and the severity of lupus nephritis still remains incompletely understood. In this study, we found that serum IL-17 expression level was associated with the severity of lupus nephritis, which was evaluated by histopathology of kidney sections and urine protein. Of note, we showed that enforced expression of IL-17 using adenovirus construct that expresses IL-17 could enhance the severity of lupus nephritis, while blockade of IL-17 using neutralizing antibody resulted in decreased severity of lupus nephritis. Consistently, we observed an impaired induction of lupus nephritis in IL-17-deficient mice. Further, we revealed that IL-17 expression level was associated with immune complex deposition and complement activation in kidney. Of interest, we found that IL-17 was crucial for increasing anti-double-stranded DNA (dsDNA) antibody production in SLE. Our results suggested that IL-17 expression level positively correlated with the severity of lupus nephritis, at least in part, because of its contribution to anti-dsDNA antibody production. These findings provided a novel mechanism for how IL-17 expression level correlated with disease pathogenesis and suggested that management of IL-17 expression level was a potential and promising approach for treatment of lupus nephritis. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of PLoS ONE is the property of Public Library of Science and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)