Singing activity‐driven Arc expression associated with vocal acoustic plasticity in juvenile songbird.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Hayase, Shin; Wada, Kazuhiro
  • Source:
    European Journal of Neuroscience. Jul2018, Vol. 48 Issue 2, p1728-1742. 15p. 4 Color Photographs, 4 Graphs.
  • Additional Information
    • Subject Terms:
    • Abstract:
      Abstract: Learned vocalization, including birdsong and human speech, is acquired through self‐motivated vocal practice during the sensitive period of vocal learning. The zebra finch (Taeniopygia guttata) develops a song characterized by vocal variability and crystallizes a defined song pattern as adulthood. However, it remains unknown how vocal variability is regulated with diurnal singing during the sensorimotor learning period. Here, we investigated the expression of activity‐dependent neuroplasticity‐related gene Arc during the early plastic song phase to examine its potential association with vocal plasticity. We first confirmed that multiple acoustic features of syllables in the plastic song were dramatically and simultaneously modulated during the first 3 hr of singing in a day and the altered features were maintained until sleep. In a concurrent manner, Arc was intensely induced during morning singing and a subsequent attenuation during afternoon singing in the robust nucleus of the arcopallium (RA) and the interfacial nucleus of the nidopallium (NIf). The singing‐driven Arc expression was not altered by circadian rhythm, but rather reduced during the day as juveniles produced more songs. Song stabilization accelerated by testosterone administration in juveniles was accompanied with attenuation of Arc induction in RA and NIf. In contrast, although early‐deafened birds produced highly unstable song even at adulthood, singing‐driven Arc expression was not different between intact and early‐deafened adults. These results suggest a potential functional link between Arc expression in RA and NIf and vocal plasticity during the sensorimotor phase of song learning. Nonetheless, Arc expression did not reflect the quality of bird's own song or auditory feedback. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of European Journal of Neuroscience is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)