The Neurocognitive Correlates of Human Reasoning: A Meta-analysis of Conditional and Syllogistic Inferences.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Wertheim, Julia (AUTHOR); Ragni, Marco (AUTHOR)
  • Source:
    Journal of Cognitive Neuroscience. Jun2020, Vol. 32 Issue 6, p1061-1078. 18p. 1 Color Photograph, 8 Charts.
  • Additional Information
    • Subject Terms:
    • Abstract:
      Inferring knowledge is a core aspect of human cognition. We can form complex sentences connecting different pieces of information, such as in conditional statements like "if someone drinks alcohol, then they must be older than 18." These are relevant for causal reasoning about our environment and allow us to think about hypothetical scenarios. Another central aspect to forming complex statements is to quantify about sets, such as in "some apples are green." Reasoning in terms of the ability to form these statements is not yet fully understood, despite being an active field of interdisciplinary research. On a theoretical level, several conceptual frameworks have been proposed, predicting diverging brain activation patterns during the reasoning process. We present a meta-analysis comprising the results of 32 neuroimaging experiments about reasoning, which we subdivided by their structure, content, and requirement for world knowledge. In conditional tasks, we identified activation in the left middle and rostrolateral pFC and parietal regions, whereas syllogistic tasks elicit activation in Broca's complex, including the BG. Concerning the content differentiation, abstract tasks exhibit activation in the left inferior and rostrolateral pFC and inferior parietal regions, whereas content tasks are in the left superior pFC and parieto-occipital regions. The findings clarify the neurocognitive mechanisms of reasoning and exhibit clear distinctions between the task's type and content. Overall, we found that the activation differences clarify inconsistent results from accumulated data and serve as useful scaffolding differentiations for theory-driven interpretations of the neuroscientific correlates of human reasoning. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Journal of Cognitive Neuroscience is the property of MIT Press and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)