Comparison of maternal third trimester hemodynamics between singleton pregnancy and twin pregnancy.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Walter De Gruyter Country of Publication: Germany NLM ID: 0361031 Publication Model: Electronic-Print Cited Medium: Internet ISSN: 1619-3997 (Electronic) Linking ISSN: 03005577 NLM ISO Abbreviation: J Perinat Med Subsets: MEDLINE
    • Publication Information:
      Publication: Berlin : Walter De Gruyter
      Original Publication: Berlin, New York, Walter de Gruyter.
    • Subject Terms:
    • Abstract:
      Objectives: The impedance cardiography (ICG) technique measures the variation of impedance in the thorax due to the physical contractile activity of the heart. Twin pregnancy is characterized by greater maternal hemodynamic changes than a singleton pregnancy.
      Methods: In a study on 121 pregnant women in the last trimester we performed ICG, evaluating the following hemodynamic parameters: stroke volume, heart rate, cardiac output, ventricular ejection time, left ventricular ejection time, thoracic impedance, and systemic vascular resistance.
      Results: The study included singleton and twin pregnancies. Heart rate values in women with single fetus was lower than in those carrying twins (85 vs. 100 beats/min, p=0.021) as were the stroke volume values (64 vs. 83 mL, p=0.010) and the cardiac output (p<0.0001). Systemic vascular resistance decreased in twin pregnancies compared to singleton pregnancy (p=0.023).
      Conclusions: ICG studies are rare, and the validation of their results is an ongoing process. However, the ICG technique is applicable in the third trimester of pregnancy and can yield important information regarding the hemodynamic profile of singleton and twin pregnancies, revealing maternal heart changes specific to twin pregnancies.
      (© 2021 Walter de Gruyter GmbH, Berlin/Boston.)
    • References:
      Robson, SC, Hunter, S, Boys, RJ, Dunlop, W. Serial study of factors influencing changes in cardiac output during human pregnancy. Am J Physiol 1989;256:H1060–5. https://doi.org/10.1152/ajpheart.1989.256.4.h1060.
      Hunter, S, Robson, SC. Adaptation of the maternal heart in pregnancy. Br Heart J 1992;68:540–3. https://doi.org/10.1136/hrt.68.12.540.
      Mabie, WC, DiSessa, TG, Crocker, LG, Sibai, BM, Arheart, KL. A longitudinal study of cardiac output in normal human pregnancy. Am J Obstet Gynecol 1994;170:849–56. https://doi.org/10.1016/s0002-9378(94)70297-7.
      Duvekot, JJ, Peeters, LL. Maternal cardiovascular hemodynamic adaptation to pregnancy. Obstet Gynecol Surv 1994;49:S1–14. https://doi.org/10.1097/00006254-199412011-00001.
      Kametas, NA, McAuliffe, F, Krampl, E, Chambers, J, Nicolaides, KH. Maternal cardiac function in twin pregnancy. Obstet Gynecol 2003;102:806–15. https://doi.org/10.1097/00006250-200310000-00024.
      Arya, S, Rao, V, Juvekar, S, Dcruz, AK. Carotid body tumors: objective criteria to predict the Shamblin Group on MR imaging. Am J Neuroradiol 2008;29:1349–54. https://doi.org/10.3174/ajnr.a1092.
      Tomsin, K, Mesens, T, Molenberghs, G, Peeters, L, Gyselaers, W. Time interval between maternal electrocardiogram and venous Doppler waves in normal pregnancy and preeclampsia: a pilot study. Ultraschall Med 2012;33:E119–25.
      Tomsin, K, Mesens, T, Molenberghs, G, Gyselaers, W. Diurnal and position-induced variability of impedance cardiography measurements in healthy subjects. Clin Physiol Funct Imag 2011;31:145–50.
      Tomsin, K, Mesens, T, Molenberghs, G, Gyselaers, W. Impedance cardiography in uncomplicated pregnancy and pre-eclampsia: a reliability study. J Obstet Gynaecol 2012;32:630–4. https://doi.org/10.3109/01443615.2012.673036.
      Parrish, MR, Laye, MR, Wood, T, Keiser, SD, Owens, MY, May, WL, et al.. Impedance cardiography facilitates differentiation of severe and superimposed preeclampsia from other hypertensive disorders. Hypertens Preg 2012;31:327–40. https://doi.org/10.3109/10641955.2010.507850.
      da Silva, EG, Carvalhaes, MA, Hirakawa, HS, da Silva, EG, Peracoli, JC. Bioimpedance in pregnant women with preeclampsia. Hypertens Pregnancy 2010;29:357–65. https://doi.org/10.3109/10641950903116523.
      Brown, BH, Barber, DC, Morice, AH, Leathard, AD. Cardiac and respiratory related electrical impedance changes in the human thorax. IEEE Trans Biomed Eng 1994;41:729–34. https://doi.org/10.1109/10.310088.
      Kubicek, WG, Kottke, J, Ramos, MU, Patterson, RP, Witsoe, DA, Labree, JW, et al.. The Minnesota impedance cardiograph- theory and applications. Biomed Eng 1974;9:410–6.
      Sramek, BB. Electrical bioimpedance. Med Electron 1983;14:95–103.
      Muzi, M, Ebert, TJ, Tristani, FE, Jeutter, DC, Barney, JA, Smith, JJ. Determination of cardiac output using ensemble-averaged impedance cardiograms. J Appl Physiol 1985;58:200–5. https://doi.org/10.1152/jappl.1985.58.1.200.
      Mallam, M, Rao, KC. Efficient reference-free adaptive artifact cancellers for impedance cardiography based remote health care monitoring systems. SpringerPlus 2016;5:770. https://doi.org/10.1186/s40064-016-2461-5.
      Easterling, TR, Benedetti, TJ, Schmucker, BC, Millard, SP. Maternal hemodynamics in normal and preeclamptic pregnancies: a longitudinal study. Obstet Gynecol 1990;76:1061–9.
      Bamfo, JE, Kametas, NA, Chambers, JB, Nicolaides, KH. Maternal cardiac function in fetal growth-restricted and non-growth-restricted small-for-gestational age pregnancies. Ultrasound Obstet Gynecol 2007;29:51–7. https://doi.org/10.1002/uog.3901.
      Duvekot, JJ, Cheriex, EC, Pieters, FA, Peeters, LL. Severely impaired fetal growth is preceded by maternal hemodynamic maladaptation in very early pregnancy. Acta Obstet Gynecol Scand 1995;74:693–7. https://doi.org/10.3109/00016349509021176.
      Cohen, SB, Kreiser, D, Erez, I, Kogan, I, Seidman, DS, Schiff, E. Effect of fetal number on maternal serum uric acid concentration. Am J Perinatol 2002;19:291–6. https://doi.org/10.1055/s-2002-34470.
      Hsu, CD, Chung, YK, Lee, IS, Chou, K, Copel, JA. Maternal serum uric acid levels in preeclamptic women with multiple gestations. Am J Perinatol 1997;14:613–7. https://doi.org/10.1055/s-2008-1040764.
      Meah, VL, Cockcroft, JR, Backx, K, Shave, R, Stohr, EJ. Cardiac output and related haemodynamics during pregnancy: a series of meta-analyses. Heart 2016;102:518–26. https://doi.org/10.1136/heartjnl-2015-308476.
      Vartun, A, Flo, K, Wilsgaard, T, Acharya, G. Maternal functional hemodynamics in the second half of pregnancy: a longitudinal study. PloS One 2015;10:e0135300. https://doi.org/10.1371/journal.pone.0135300.
      Vartun, A, Flo, K, Widnes, C, Acharya, G. Static and functional hemodynamic profiles of women with abnormal uterine artery Doppler at 22-24 Weeks of Gestation. PLoS One 2016;11:e0157916. https://doi.org/10.1371/journal.pone.0157916.
      Morris, R, Sunesara, I, Rush, L, Anderson, B, Blake, PG, Darby, M, et al.. Maternal hemodynamics by thoracic impedance cardiography for normal pregnancy and the postpartum period. Obstet Gynecol 2014;123:318–24. https://doi.org/10.1097/aog.0000000000000104.
      Oben, J, Tomsin, K, Mesens, T, Staelens, A, Molenberghs, G, Gyselaers, W. Maternal cardiovascular profiling in the first trimester of pregnancies complicated with gestation-induced hypertension or fetal growth retardation: a pilot study. J Matern Fetal Neonatal Med 2014;27:1646–51. https://doi.org/10.3109/14767058.2013.871700.
      Woelkers, DA, Ghashghaei, R, Klisser, K, Archer, T. PP153. Noninvasive assessment of maternal hemodynamic function by electrical impedance cardiography (EIC) and correlation with uterine and umbilical vascular resistance in mid-pregnancy. Pregnancy Hypertens 2012;2:321–2. https://doi.org/10.1016/j.preghy.2012.04.264.
      Moertl, MG, Schlembach, D, Papousek, I, Hinghofer-Szalkay, H, Weiss, EM, Lang, U, et al.. Hemodynamic evaluation in pregnancy: limitations of impedance cardiography. Physiol Meas 2012;33:1015–26. https://doi.org/10.1088/0967-3334/33/6/1015.
      McIntyre, JP, Ellyett, KM, Mitchell, EA, Quill, GM, Thompson, JM, Stewart, AW, et al.. Validation of thoracic impedance cardiography by echocardiography in healthy late pregnancy. BMC Preg Childbirth 2015;15:70. https://doi.org/10.1186/s12884-015-0504-5.
      Orabona, R, Prefumo, F, Zanardini, C, Magri, R, Loardi, C, Cappa, V, et al.. Maternal functional hemodynamics in uncomplicated twin pregnancies: a longitudinal study using impedance cardiography. Acta Obstet Gynecol Scand 2019;98:188–95. https://doi.org/10.1111/aogs.13479.
      Lavie, A, Ram, M, Lev, S, Blecher, Y, Amikam, U, Shulman, Y, et al.. Maternal hemodynamics in late gestation and immediate postpartum in singletons vs. twin pregnancies. Arch Gynecol Obstet 2018;297:353–63. https://doi.org/10.1007/s00404-017-4601-8.
      Ghi, T, Kuleva, M, Youssef, A, Maroni, E, Nanni, M, Pilu, G, et al.. Maternal cardiac function in complicated twin pregnancy: a longitudinal study. Ultrasound Obstet Gynecol 2011;38:581–5. https://doi.org/10.1002/uog.8915.
    • Contributed Indexing:
      Keywords: hemodynamic parameters; impedance cardiography; singleton pregnancy; twin pregnancy
    • Publication Date:
      Date Created: 20210210 Date Completed: 20211126 Latest Revision: 20211126
    • Publication Date:
      20231215
    • Accession Number:
      10.1515/jpm-2020-0169
    • Accession Number:
      33567181