Comparison of peripersonal space in front and rear spaces.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer Verlag Country of Publication: Germany NLM ID: 0043312 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-1106 (Electronic) Linking ISSN: 00144819 NLM ISO Abbreviation: Exp Brain Res Subsets: MEDLINE
    • Publication Information:
      Original Publication: Berlin : Springer Verlag
    • Subject Terms:
    • Abstract:
      The space immediately around the body, referred to as the peripersonal space (PPS), plays a crucial role in interactions with external objects and in avoiding unsafe situations. This study aimed to investigate whether the size of the PPS changes depending on direction, with a particular focus on the disparity between the front and rear spaces. A vibrotactile stimulus was presented to measure PPS while a task-irrelevant auditory stimulus (probe) approached the participant. In addition, to evaluate the effect of the probe, a baseline condition was used in which only tactile stimuli were presented. The results showed that the auditory facilitation effect of the tactile stimulus was greater in the rear condition than in the front condition. Conversely, the performance on tasks related to auditory distance perception and sound speed estimation did not differ between the two directions, indicating that the difference in the auditory facilitation effect between directions cannot be explained by these factors. These findings indicate that the strength of audio-tactile integration is greater in the rear space compared to the front space, suggesting that the representation of the PPS differed between the front and rear spaces.
      (© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
    • References:
      Aggius-Vella E, Kolarik AJ, Gori M, Cirstea S, Campus C, Moore BCJ, Pardhan S (2020) Comparison of auditory spatial bisection and minimum audible angle in front, lateral, and back space. Sci Rep 10(1):6279. https://doi.org/10.1038/s41598-020-62983-z. (PMID: 10.1038/s41598-020-62983-z322863627156409)
      Aggius-Vella E, Gori M, Campus C, Moore BCJ, Pardhan S, Kolarik AJ, Van der Stoep N (2022) Auditory distance perception in front and rear space. Hear Res 417:108468. https://doi.org/10.1016/j.heares.2022.108468. (PMID: 10.1016/j.heares.2022.10846835220107)
      Ardizzi M, Ferri F (2018) Interoceptive influences on peripersonal space boundary. Cognition 177:79–86. https://doi.org/10.1016/j.cognition.2018.04.001. (PMID: 10.1016/j.cognition.2018.04.00129655026)
      Asutay E, Västfjäll D (2015) Attentional and emotional prioritization of the sounds occurring outside the visual field. Emotion 15(3):281–286. https://doi.org/10.1037/emo0000045. (PMID: 10.1037/emo000004525603132)
      Bach DR, Schächinger H, Neuhoff JG, Esposito F, Salle FD, Lehmann C, Herdener M, Scheffler K, Seifritz E (2008) Rising sound intensity: an intrinsic warning cue activating the amygdala. Cereb Cortex 18(1):145–150. https://doi.org/10.1093/cercor/bhm040. (PMID: 10.1093/cercor/bhm04017490992)
      Bach DR, Furl N, Barnes G, Dolan RJ (2015) Sustained magnetic responses in temporal cortex reflect instantaneous significance of approaching and receding sounds. PLoS ONE 10(7):e0134060. https://doi.org/10.1371/journal.pone.0134060. (PMID: 10.1371/journal.pone.0134060262263954520611)
      Bremmer F, Schlack A, Duhamel JR, Graf W, Fink GR (2001) Space coding in primate posterior parietal cortex. Neuroimage 14(1 Pt 2):S46–S51. https://doi.org/10.1006/nimg.2001.0817. (PMID: 10.1006/nimg.2001.081711373132)
      Bufacchi RJ, Iannetti GD (2018) An action field theory of peripersonal space. Trends Cogn Sci 22(12):1076–1090. https://doi.org/10.1016/j.tics.2018.09.004. (PMID: 10.1016/j.tics.2018.09.004303370616237614)
      Bufacchi RJ, Liang M, Griffin LD, Iannetti GD (2016) A geometric model of defensive peripersonal space. J Neurophysiol 115(1):218–225. https://doi.org/10.1152/jn.00691.2015. (PMID: 10.1152/jn.00691.201526510762)
      Canzoneri E, Magosso E, Serino A (2012) Dynamic sounds capture the boundaries of peripersonal space representation in humans. PLoS ONE 7(9):e44306. https://doi.org/10.1371/journal.pone.0044306. (PMID: 10.1371/journal.pone.0044306230285163460958)
      Cléry J, Guipponi O, Wardak C, Hamed SB (2015) Neuronal bases of peripersonal and extrapersonal spaces, their plasticity and their dynamics: knowns and unknowns. Neuropsychologia 70:313–326. https://doi.org/10.1016/j.neuropsychologia.2014.10.022. (PMID: 10.1016/j.neuropsychologia.2014.10.02225447371)
      Cohen J (1992) A power primer. Psychol Bull 112(1):155–159. https://doi.org/10.1037/0033-2909.112.1.155. (PMID: 10.1037/0033-2909.112.1.15519565683)
      de Vignemont F, Iannetti GD (2015) How many peripersonal spaces? Neuropsychol 70:327–334. https://doi.org/10.1016/j.neuropsychologia.2014.11.018. (PMID: 10.1016/j.neuropsychologia.2014.11.018)
      de Haan AM, Smit M, Van der Stigchel S, Dijkerman HC (2016) Approaching threat modulates visuotactile interactions in peripersonal space. Exp Brain Res 234(7):1875–1884. https://doi.org/10.1007/s00221-016-4571-2. (PMID: 10.1007/s00221-016-4571-2268948914893051)
      De Paepe AL, Crombez G, Legrain V (2016) What’s coming near? The influence of dynamical visual stimuli on nociceptive processing. PLoS ONE 11(5):e0155864. https://doi.org/10.1371/journal.pone.0155864. (PMID: 10.1371/journal.pone.0155864272244214880339)
      di Pellegrino G, Làdavas E, Farnè A (1997) Seeing where your hands are. Nature 388(6644):730–730. https://doi.org/10.1038/41921. (PMID: 10.1038/419219285584)
      Duhamel JR, Colby CL, Goldberg ME (1998) Ventral intraparietal area of the macaque: congruent visual and somatic response properties. J Neurophysiol 79(1):126–136. https://doi.org/10.1152/jn.1998.79.1.126. (PMID: 10.1152/jn.1998.79.1.1269425183)
      Elkin LA, Kay M, Higgins JJ, Wobbrock JO (2021) An aligned rank transform procedure for multifactor contrast tests. In: The 34th annual ACM symposium on user interface software and technology, pp 754–768. https://doi.org/10.1145/3472749.3474784.
      Farnè A, Làdavas E (2002) Auditory peripersonal space in humans. J Cogn Neurosci 14(7):1030–1043. https://doi.org/10.1162/089892902320474481. (PMID: 10.1162/08989290232047448112419126)
      Faul F, Erdfelder E, Lang AG, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39(2):175–191. https://doi.org/10.3758/bf03193146. (PMID: 10.3758/bf0319314617695343)
      Faul F, Erdfelder E, Buchner A, Lang AG (2009) Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav Res Methods 41(4):1149–1160. https://doi.org/10.3758/BRM.41.4.1149. (PMID: 10.3758/BRM.41.4.114919897823)
      Ferri F, Tajadura-Jiménez A, Väljamäe A, Vastano R, Costantini M (2015) Emotion-inducing approaching sounds shape the boundaries of multisensory peripersonal space. Neuropsychologia 70:468–475. https://doi.org/10.1016/j.neuropsychologia.2015.03.001. (PMID: 10.1016/j.neuropsychologia.2015.03.00125744869)
      Fogassi L, Gallese V, Fadiga L, Luppino G, Matelli M, Rizzolatti G (1996) Coding of peripersonal space in inferior premotor cortex (area F4). J Neurophysiol 76(1):141–157. https://doi.org/10.1152/jn.1996.76.1.141. (PMID: 10.1152/jn.1996.76.1.1418836215)
      Frankowska N, Parzuchowski M, Wojciszke B, Olszanowski M, Winkielman P (2020) Rear negativity: verbal messages coming from behind are perceived as more negative. Eur J Soc Psychol 50(4):889–902. https://doi.org/10.1002/ejsp.2649. (PMID: 10.1002/ejsp.2649)
      Geers L, Coello Y (2023) The relationship between action, social and multisensory spaces. Sci Rep 13(1):202. https://doi.org/10.1038/s41598-023-27514-6. (PMID: 10.1038/s41598-023-27514-6366045259814785)
      Graziano MSA, Cooke DF (2006) Parieto-frontal interactions, personal space, and defensive behavior. Neuropsychologia 44(6):845–859. https://doi.org/10.1016/j.neuropsychologia.2005.09.009. (PMID: 10.1016/j.neuropsychologia.2005.09.00916277998)
      Graziano MS, Gross CG (1993) A bimodal map of space: Somatosensory receptive fields in the macaque putamen with corresponding visual receptive fields. Exp Brain Res 97(1):96–109. https://doi.org/10.1007/BF00228820. (PMID: 10.1007/BF002288208131835)
      Graziano MS, Yap GS, Gross CG (1994) Coding of visual space by premotor neurons. Science 266(5187):1054–1057. https://doi.org/10.1126/science.7973661. (PMID: 10.1126/science.79736617973661)
      Graziano MS, Hu XT, Gross CG (1997) Visuospatial properties of ventral premotor cortex. J Neurophysiol 77(5):2268–2292. https://doi.org/10.1152/jn.1997.77.5.2268. (PMID: 10.1152/jn.1997.77.5.22689163357)
      Graziano MS, Reiss LA, Gross CG (1999) A neuronal representation of the location of nearby sounds. Nature 397(6718):428–430. https://doi.org/10.1038/17115. (PMID: 10.1038/171159989407)
      Hobeika L, Viaud-Delmon I, Taffou M (2018) Anisotropy of lateral peripersonal space is linked to handedness. Exp Brain Res 236(2):609–618. https://doi.org/10.1007/s00221-017-5158-2. (PMID: 10.1007/s00221-017-5158-229255918)
      Holmes NP, Martin D, Mitchell W, Noorani Z, Thorne A (2020) Do sounds near the hand facilitate tactile reaction times? Four experiments and a meta-analysis provide mixed support and suggest a small effect size. Exp Brain Res 238(4):995–1009. https://doi.org/10.1007/s00221-020-05771-5. (PMID: 10.1007/s00221-020-05771-5321935857181441)
      Hsee CK, Tu Y, Lu ZY, Ruan B (2014) Approach aversion: negative hedonic reactions toward approaching stimuli. J Pers Soc Psychol 106:699–712. https://doi.org/10.1037/a0036332. (PMID: 10.1037/a003633224749819)
      Hunley SB, Lourenco SF (2018) What is peripersonal space? An examination of unresolved empirical issues and emerging findings. Wiley Interdiscip Rev Cogn Sci 9(6):e1472. https://doi.org/10.1002/wcs.1472. (PMID: 10.1002/wcs.147229985555)
      Iseki R (2020) anovakun, version 4.8.5. Computer software. http://riseki.php.xdomain.jp/index.php . Accessed 7 Spring 2023.
      Kandula M, Van der Stoep N, Hofman D, Dijkerman HC (2017) On the contribution of overt tactile expectations to visuo-tactile interactions within the peripersonal space. Exp Brain Res 235(8):2511–2522. https://doi.org/10.1007/s00221-017-4965-9. (PMID: 10.1007/s00221-017-4965-9285284595502056)
      Karuei I, MacLean KE, Foley-Fisher Z, MacKenzie R, Koch S, El-Zohairy, M (2011) Detecting vibrations across the body in mobile contexts. In: Proceedings SIGCHI conference on human factors in computing systems, pp 3267–3276. https://doi.org/10.1145/1978942.1979426.
      Kitagawa N, Zampini M, Spence C (2005) Audiotactile interactions in near and far space. Exp Brain Res 166(3–4):528–537. https://doi.org/10.1007/s00221-005-2393-8. (PMID: 10.1007/s00221-005-2393-816091968)
      Kolarik AJ, Moore BCJ, Zahorik P, Cirstea S, Pardhan S (2016) Auditory distance perception in humans: a review of cues, development, neuronal bases, and effects of sensory loss. Atten Percept Psychophys 78(2):373–395. https://doi.org/10.3758/s13414-015-1015-1. (PMID: 10.3758/s13414-015-1015-126590050)
      Kolarik AJ, Pardhan S, Cirstea S, Moore BCJ (2017) Auditory spatial representations of the world are compressed in blind humans. Exp Brain Res 235(2):597–606. https://doi.org/10.1007/s00221-016-4823-1. (PMID: 10.1007/s00221-016-4823-127837259)
      Kuroda N, Teramoto W (2021) Expansion of space for visuotactile interaction during visually induced self-motion. Exp Brain Res 239(1):257–265. https://doi.org/10.1007/s00221-020-05966-w. (PMID: 10.1007/s00221-020-05966-w33146747)
      Kuroda N, Teramoto W (2022) Contribution of motor and proprioceptive information to visuotactile interaction in peripersonal space during bike riding. Exp Brain Res 240(2):491–501. https://doi.org/10.1007/s00221-021-06269-4. (PMID: 10.1007/s00221-021-06269-434800141)
      Làdavas E (2002) Functional and dynamic properties of visual peripersonal space. Trends Cogn Sci 6(1):17–22. https://doi.org/10.1016/S1364-6613(00)01814-3. (PMID: 10.1016/S1364-6613(00)01814-311849611)
      Làdavas E, Farnè A (2004a) Visuo-tactile representation of near-the-body space. J Physiol Paris 98(1–3):161–170. https://doi.org/10.1016/j.jphysparis.2004.03.007. (PMID: 10.1016/j.jphysparis.2004.03.00715477030)
      Làdavas E, Farnè A (2004b) Neurophysiological evidence for multimodal representations of space near specific body parts. In: Spence C, Driver J (eds) Crossmodal space and crossmodal attention. Oxford University Press, Oxford, pp 69–98. https://doi.org/10.1093/f:oso/9780198524861.003.0004. (PMID: 10.1093/f:oso/9780198524861.003.0004)
      Làdavas E, di Pellegrino G, Farnè A, Zeloni G (1998a) Neuropsychological evidence of an integrated visuotactile representation of peripersonal space in humans. J Cogn Neurosci 10:581–589. https://doi.org/10.1162/089892998562988. (PMID: 10.1162/0898929985629889802991)
      Làdavas E, Zeloni G, Farnè A (1998b) Visual peripersonal space centred on the face in humans. Brain 121:2317–2326. https://doi.org/10.1093/brain/121.12.231. (PMID: 10.1093/brain/121.12.2319874482)
      Matsuda Y, Sugimoto M, Inami M, Kitazaki M (2021) Peripersonal space in the front, rear, left and right directions for audio-tactile multisensory integration. Sci Rep 11(1):11303. https://doi.org/10.1038/s41598-021-90784-5. (PMID: 10.1038/s41598-021-90784-5340502138163804)
      Neuhoff JG (1998) Perceptual bias for rising tones. Nature 395(6698):123–124. https://doi.org/10.1038/25862. (PMID: 10.1038/258629744266)
      Neuhoff JG (2001) An adaptive bias in the perception of looming auditory motion. Ecol Psychol 132:87–110. https://doi.org/10.1207/S15326969ECO1302_2. (PMID: 10.1207/S15326969ECO1302_2)
      Neuhoff JG (2016) Looming sounds are perceived as faster than receding sounds. Cogn Res Princ Implic 1(1):15. https://doi.org/10.1186/s41235-016-0017-4. (PMID: 10.1186/s41235-016-0017-4281801665256440)
      Noel JP, Grivaz P, Marmaroli P, Lissek H, Blanke O, Serino A (2015) Full body action remapping of peripersonal space: the case of walking. Neuropsychologia 70:375–384. https://doi.org/10.1016/j.neuropsychologia.2014.08.030. (PMID: 10.1016/j.neuropsychologia.2014.08.03025193502)
      Pellencin E, Paladino MP, Herbelin B, Serino A (2018) Social perception of others shapes one’s own multisensory peripersonal space. Cortex 104:163–179. https://doi.org/10.1016/j.cortex.2017.08.033. (PMID: 10.1016/j.cortex.2017.08.03328965705)
      Pfeiffer C, Noel JP, Serino A, Blanke O (2018) Vestibular modulation of peripersonal space boundaries. Eur J Neurosci 47(7):800–811. https://doi.org/10.1111/ejn.13872. (PMID: 10.1111/ejn.1387229461657)
      Rizzolatti G, Scandolara C, Matelli M, Gentilucci M (1981a) Afferent properties of periarcuate neurons in macaque monkeys. I. Somatosensory responses. Behav Brain Res 2(2):125–146. https://doi.org/10.1016/0166-4328(81)90052-8. (PMID: 10.1016/0166-4328(81)90052-87248054)
      Rizzolatti G, Scandolara C, Matelli M, Gentilucci M (1981b) Afferent properties of periarcuate neurons in macaque monkeys: II. Visual responses. Behav Brain Res 2(2):147–163. https://doi.org/10.1016/0166-4328(81)90053-X. (PMID: 10.1016/0166-4328(81)90053-X7248055)
      Rizzolatti G, Matelli M, Pavesi G (1983) Deficits in attention and movement following the removal of postarcuate (area 6) and prearcuate (area 8) cortex in macaque monkeys. Brain 106(3):655–673. https://doi.org/10.1093/brain/106.3.655. (PMID: 10.1093/brain/106.3.6556640275)
      Rizzolatti G, Fadiga L, Fogassi L, Gallese V (1997) The space around us. Science 277(5323):190–191. https://doi.org/10.1126/science.277.5323.190. (PMID: 10.1126/science.277.5323.1909235632)
      Rizzolatti G, Luppino G, Matelli M (1998) The organization of the cortical motor system: new concepts. Electroencephalogr Clin Neurophysiol 106(4):283–296. https://doi.org/10.1016/S0013-4694(98)00022-4. (PMID: 10.1016/S0013-4694(98)00022-49741757)
      Sambo CF, Forster B (2009) An ERP investigation on visuotactile interactions in peripersonal and extrapersonal space: evidence for the spatial rule. J Cogn Neurosci 21(8):1550–1559. https://doi.org/10.1162/jocn.2009.21109. (PMID: 10.1162/jocn.2009.2110918767919)
      Serino A, Noel JP, Galli G, Canzoneri E, Marmaroli P, Lissek H, Blanke O (2015) Body part-centered and full body-centered peripersonal space representations. Sci Rep 5(1):18603. https://doi.org/10.1038/srep18603. (PMID: 10.1038/srep18603266906984686995)
      Taffou M, Viaud-Delmon I (2014) Cynophobic fear adaptively extends peripersonal space. Front Psychiatry 5:122. https://doi.org/10.3389/fpsyt.2014.00122. (PMID: 10.3389/fpsyt.2014.00122252323424153021)
      Tajadura-Jiménez A, Väljamäe A, Asutay E, Västfjäll D (2010) Embodied auditory perception: the emotional impact of approaching and receding sound sources. Emotion 10(2):216–229. https://doi.org/10.1037/a0018422. (PMID: 10.1037/a001842220364898)
      Teramoto W (2018) A behavioral approach to shared mapping of peripersonal space between oneself and others. Sci Rep 8(1):5432. https://doi.org/10.1038/s41598-018-23815-3. (PMID: 10.1038/s41598-018-23815-3296157145882808)
      Teraoka R, Hayashida Y, Teramoto W (2023) Difference in auditory time-to-contact estimation between the rear and other directions. Acoust Sci Technol 44(2):77–83. https://doi.org/10.1250/ast.44.77. (PMID: 10.1250/ast.44.77)
      Van der Stoep N, Nijboer TCW, Van der Stigchel S, Spence C (2015) Multisensory interactions in the depth plane in front and rear space: a review. Neuropsychologia 70:335–349. https://doi.org/10.1016/j.neuropsychologia.2014.12.007. (PMID: 10.1016/j.neuropsychologia.2014.12.00725498407)
      Wobbrock JO, Findlater L, Gergle D, Higgins JJ (2011) The aligned rank transform for nonparametric factorial analyses using only anova procedures. In: Proceedings of the SIGCHI conference on human factors in computing systems, pp 143–146. https://doi.org/10.1145/1978942.1978963.
      Zahorik P, Brungart DS, Bronkhorst AW (2005) Auditory distance perception in humans: a summary of past and present research. Acta Acust United Acust 91(3):409–420.
    • Grant Information:
      JP17K18708 Japan Society for the Promotion of Science; JP19H00631 Japan Society for the Promotion of Science; JP20J00130 Japan Society for the Promotion of Science; JP21H05335 Japan Society for the Promotion of Science; JP21K13754 Japan Society for the Promotion of Science; JP22H00523 Japan Society for the Promotion of Science; JP20H05801 Japan Society for the Promotion of Science
    • Contributed Indexing:
      Keywords: Audiotactile interaction; Auditory distance perception; Peripersonal space; Rear space
    • Publication Date:
      Date Created: 20240206 Date Completed: 20240329 Latest Revision: 20240329
    • Publication Date:
      20240329
    • Accession Number:
      10.1007/s00221-024-06782-2
    • Accession Number:
      38319398