Investigating Liquid-Liquid Phase Separation in Virus-Generated Inclusion Bodies Using Fluorescence Recovery After Photobleaching of Fluorescently Labeled Host Proteins.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Humana Press Country of Publication: United States NLM ID: 9214969 Publication Model: Print Cited Medium: Internet ISSN: 1940-6029 (Electronic) Linking ISSN: 10643745 NLM ISO Abbreviation: Methods Mol Biol Subsets: MEDLINE
    • Publication Information:
      Publication: Totowa, NJ : Humana Press
      Original Publication: Clifton, N.J. : Humana Press,
    • Subject Terms:
    • Abstract:
      Many negative-sense single-stranded RNA viruses within the order Mononegavirales harm humans. A common feature shared among cells infected by these viruses is the formation of subcellular membraneless structures called biomolecular condensates, also known as inclusion bodies (IBs), that form through a process called liquid-liquid phase separation (LLPS). Like many other membraneless organelles, viral IBs enrich a specific subset of viral and host proteins involved in the formation of viral particles. Elucidation of the properties and regulation of these IBs as they mature throughout the viral replication process are important for our understanding of viral replication, which may also lead to the development of alternative antiviral treatments. The protocol outlined in this chapter aims to characterize the intrinsic properties of LLPS within the measles virus (MeV, a member of Mononegavirales) IBs by using an imaging approach that fluorescently tags an IB-associated host protein. This method uses common laboratory techniques and is generalizable to any host factors as well as other viral systems.
      (© 2024. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.)
    • References:
      Novoa RR, Calderita G, Arranz R, Fontana J, Granzow H, Risco C (2005) Virus factories: associations of cell organelles for viral replication and morphogenesis. Biol Cell 97:147–172. https://doi.org/10.1042/BC20040058. (PMID: 10.1042/BC20040058156567807161905)
      Su JM, Wilson MZ, Samuel CE, Ma D (2021) Formation and function of liquid-like viral factories in negative-sense single-stranded RNA virus infections. Viruses 13:126. https://doi.org/10.3390/v13010126. (PMID: 10.3390/v13010126334774487835873)
      Etibor TA, Yamauchi Y, Amorim MJ (2021) Liquid biomolecular condensates and viral lifecycles: review and perspectives. Viruses 13:366. https://doi.org/10.3390/v13030366. (PMID: 10.3390/v13030366336691417996568)
      Jiang H, Wang S, Huang Y, He X, Cui H, Zhu X, Zheng Y (2015) Phase transition of spindle-associated protein regulate spindle apparatus assembly. Cell 163:108–122. https://doi.org/10.1016/j.cell.2015.08.010. (PMID: 10.1016/j.cell.2015.08.010263884404607269)
      Brangwynne CP, Eckmann CR, Courson DS, Rybarska A, Hoege C, Gharakhani J, Jülicher F, Hyman AA (2009) Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324:1729–1732. https://doi.org/10.1126/science.1172046. (PMID: 10.1126/science.117204619460965)
      Larson AG, Elnatan D, Keenen MM, Trnka MJ, Johnston JB, Burlingame AL, Agard DA, Redding S, Narlikar GJ (2017) Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. Nature 547:236–240. https://doi.org/10.1038/nature22822. (PMID: 10.1038/nature22822286366045606208)
      Strom AR, Emelyanov AV, Mir M, Fyodorov DV, Darzacq X, Karpen GH (2017) Phase separation drives heterochromatin domain formation. Nature 547:241–245. https://doi.org/10.1038/nature22989. (PMID: 10.1038/nature22989286365976022742)
      Gibson BA, Doolittle LK, Schneider MWG, Jensen LE, Gamarra N, Henry L, Gerlich DW, Redding S, Rosen MK (2019) Organization of chromatin by intrinsic and regulated phase separation. Cell 179:470–484.e21. https://doi.org/10.1016/j.cell.2019.08.037.
      Brangwynne CP, Mitchison TJ, Hyman AA (2011) Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes. Proc Natl Acad Sci USA 108:4334–4339. https://doi.org/10.1073/pnas.1017150108. (PMID: 10.1073/pnas.1017150108213681803060270)
      Feric M, Vaidya N, Harmon TS, Mitrea DM, Zhu L, Richardson TM, Kriwacki RW, Pappu RV, Brangwynne CP (2016) Coexisting liquid phases underlie nucleolar subcompartments. Cell 165:1686–1697. https://doi.org/10.1016/j.cell.2016.04.047. (PMID: 10.1016/j.cell.2016.04.047272122365127388)
      Handwerger KE, Cordero JA, Gall JG (2005) Cajal bodies, nucleoli, and speckles in the Xenopus oocyte nucleus have a low-density, sponge-like structure. Mol Biol Cell 16:202–211. https://doi.org/10.1091/mbc.e04-08-0742. (PMID: 10.1091/mbc.e04-08-074215509651539164)
      Corpet A, Kleijwegt C, Roubille S, Juillard F, Jacquet K, Texier P, Lomonte P (2020) PML nuclear bodies and chromatin dynamics: catch me if you can! Nucleic Acids Res 48:11890–11912. https://doi.org/10.1093/nar/gkaa828. (PMID: 10.1093/nar/gkaa828330684097708061)
      Marzahn MR, Marada S, Lee J, Nourse A, Kenrick S, Zhao H, Ben-Nissan G, Kolaitis R-M, Peters JL, Pounds S, Errington WJ, Privé GG, Taylor JP, Sharon M, Schuck P, Ogden SK, Mittag T (2016) Higher-order oligomerization promotes localization of SPOP to liquid nuclear speckles. EMBO J 35:1254–1275. https://doi.org/10.15252/embj.201593169. (PMID: 10.15252/embj.201593169272208494910529)
      Kroschwald S, Maharana S, Mateju D, Malinovska L, Nüske E, Poser I, Richter D, Alberti S (2015) Promiscuous interactions and protein disaggregases determine the material state of stress-inducible RNP granules. elife 4:e06807. https://doi.org/10.7554/eLife.06807. (PMID: 10.7554/eLife.06807262381904522596)
      Molliex A, Temirov J, Lee J, Coughlin M, Kanagaraj AP, Kim HJ, Mittag T, Taylor JP (2015) Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163:123–133. https://doi.org/10.1016/j.cell.2015.09.015. (PMID: 10.1016/j.cell.2015.09.015264063745149108)
      Patel A, Lee HO, Jawerth L, Maharana S, Jahnel M, Hein MY, Stoynov S, Mahamid J, Saha S, Franzmann TM, Pozniakovski A, Poser I, Maghelli N, Royer LA, Weigert M, Myers EW, Grill S, Drechsel D, Hyman AA, Alberti S (2015) A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 162:1066–1077. https://doi.org/10.1016/j.cell.2015.07.047. (PMID: 10.1016/j.cell.2015.07.04726317470)
      Shin Y, Brangwynne CP (2017) Liquid phase condensation in cell physiology and disease. Science 357:eaaf4382. https://doi.org/10.1126/science.aaf4382. (PMID: 10.1126/science.aaf438228935776)
      Banani SF, Lee HO, Hyman AA, Rosen MK (2017) Biomolecular condensates: organizers of cellular biochemistry. Nat Rev Mol Cell Biol 18:285–298. https://doi.org/10.1038/nrm.2017.7. (PMID: 10.1038/nrm.2017.7282250817434221)
      Boeynaems S, Alberti S, Fawzi NL, Mittag T, Polymenidou M, Rousseau F, Schymkowitz J, Shorter J, Wolozin B, Van Den Bosch L, Tompa P, Fuxreiter M (2018) Protein phase separation: a new phase in cell biology. Trends Cell Biol 28:420–435. https://doi.org/10.1016/j.tcb.2018.02.004. (PMID: 10.1016/j.tcb.2018.02.004296026976034118)
      Gomes E, Shorter J (2019) The molecular language of membraneless organelles. J Biol Chem 294:7115–7127. https://doi.org/10.1074/jbc.TM118.001192. (PMID: 10.1074/jbc.TM118.00119230045872)
      Alberti S, Dormann D (2019) Liquid-liquid phase separation in disease. Annu Rev Genet 53:171–194. https://doi.org/10.1146/annurev-genet-112618-043527. (PMID: 10.1146/annurev-genet-112618-04352731430179)
      Zhou Y, Su JM, Samuel CE, Ma D (2019) Measles virus forms inclusion bodies with properties of liquid organelles. J Virol 93:e00948–e00919. https://doi.org/10.1128/JVI.00948-19. (PMID: 10.1128/JVI.00948-19313755916803276)
      Nikolic J, Le Bars R, Lama Z, Scrima N, Lagaudrière-Gesbert C, Gaudin Y, Blondel D (2017) Negri bodies are viral factories with properties of liquid organelles. Nat Commun 8:58. https://doi.org/10.1038/s41467-017-00102-9. (PMID: 10.1038/s41467-017-00102-9286800965498545)
      Galloux M, Risso-Ballester J, Richard C-A, Fix J, Rameix-Welti M-A, Eléouët J-F (2020) Minimal elements required for the formation of respiratory syncytial virus cytoplasmic inclusion bodies in vivo and in vitro. MBio 11:e01202–e01220. https://doi.org/10.1128/mBio.01202-20. (PMID: 10.1128/mBio.01202-20329630007512546)
      Heinrich BS, Maliga Z, Stein DA, Hyman AA, Whelan SPJ (2018) Phase transitions drive the formation of vesicular stomatitis virus replication compartments. MBio 9:e02290–e02217. https://doi.org/10.1128/mBio.02290-17. (PMID: 10.1128/mBio.02290-17301812556123442)
      Ma D, George CX, Nomburg JL, Pfaller CK, Cattaneo R, Samuel CE (2018) Upon infection, cellular WD repeat-containing protein 5 (WDR5) localizes to cytoplasmic inclusion bodies and enhances measles virus replication. J Virol 92:e01726–e01717. https://doi.org/10.1128/JVI.01726-17. (PMID: 10.1128/JVI.01726-17292378395809725)
      BenDavid E, Pfaller CK, Pan Y, Samuel CE, Ma D (2022) Host 5′-3′ exoribonuclease XRN1 acts as a proviral factor for measles virus replication by downregulating the dsRNA-activated kinase PKR. J Virol 96:e0131922. https://doi.org/10.1128/jvi.01319-22. (PMID: 10.1128/jvi.01319-2236300942)
      Alberti S, Gladfelter A, Mittag T (2019) Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates. Cell 176:419–434. https://doi.org/10.1016/j.cell.2018.12.035. (PMID: 10.1016/j.cell.2018.12.035306823706445271)
      McSwiggen DT, Mir M, Darzacq X, Tjian R (2019) Evaluating phase separation in live cells: diagnosis, caveats, and functional consequences. Genes Dev 33:1619–1634. https://doi.org/10.1101/gad.331520.119. (PMID: 10.1101/gad.331520.119315948036942051)
      Taylor NO, Wei M-T, Stone HA, Brangwynne CP (2019) Quantifying dynamics in phase-separated condensates using fluorescence recovery after photobleaching. Biophys J 117:1285–1300. https://doi.org/10.1016/j.bpj.2019.08.030. (PMID: 10.1016/j.bpj.2019.08.030315407066818185)
      Heinrich BS, Cureton DK, Rahmeh AA, Whelan SPJ (2010) Protein expression redirects vesicular stomatitis virus RNA synthesis to cytoplasmic inclusions. PLoS Pathog 6:e1000958. https://doi.org/10.1371/journal.ppat.1000958. (PMID: 10.1371/journal.ppat.1000958205856322891829)
      Guseva S, Milles S, Jensen MR, Salvi N, Kleman J-P, Maurin D, Ruigrok RWH, Blackledge M (2020) Measles virus nucleo- and phosphoproteins form liquid-like phase-separated compartments that promote nucleocapsid assembly. Sci Adv 6:eaaz7095. https://doi.org/10.1126/sciadv.aaz7095. (PMID: 10.1126/sciadv.aaz7095322700457112944)
      Alenquer M, Vale-Costa S, Etibor TA, Ferreira F, Sousa AL, Amorim MJ (2019) Influenza A virus ribonucleoproteins form liquid organelles at endoplasmic reticulum exit sites. Nat Commun 10:1629. https://doi.org/10.1038/s41467-019-09549-4. (PMID: 10.1038/s41467-019-09549-4309675476456594)
      Monette A, Niu M, Chen L, Rao S, Gorelick RJ, Mouland AJ (2020) Pan-retroviral nucleocapsid-mediated phase separation regulates genomic RNA positioning and trafficking. Cell Rep 31:107520. https://doi.org/10.1016/j.celrep.2020.03.084. (PMID: 10.1016/j.celrep.2020.03.084323206628965748)
      Sengupta P, Seo AY, Pasolli HA, Song YE, Johnson MC, Lippincott-Schwartz J (2019) A lipid-based partitioning mechanism for selective incorporation of proteins into membranes of HIV particles. Nat Cell Biol 21:452–461. https://doi.org/10.1038/s41556-019-0300-y. (PMID: 10.1038/s41556-019-0300-y30936472)
      Savastano A, Ibáñez de Opakua A, Rankovic M, Zweckstetter M (2020) Nucleocapsid protein of SARS-CoV-2 phase separates into RNA-rich polymerase-containing condensates. Nat Commun 11:6041. https://doi.org/10.1038/s41467-020-19843-1. (PMID: 10.1038/s41467-020-19843-1332471087699647)
      Carlson CR, Asfaha JB, Ghent CM, Howard CJ, Hartooni N, Safari M, Frankel AD, Morgan DO (2020) Phosphoregulation of phase separation by the SARS-CoV-2 N protein suggests a biophysical basis for its dual functions. Mol Cell 80:1092–1103.e4. https://doi.org/10.1016/j.molcel.2020.11.025. (PMID: 10.1016/j.molcel.2020.11.025332480257677695)
      Cascarina SM, Ross ED (2020) A proposed role for the SARS-CoV-2 nucleocapsid protein in the formation and regulation of biomolecular condensates. FASEB J 34:9832–9842. https://doi.org/10.1096/fj.202001351. (PMID: 10.1096/fj.20200135132562316)
      Chen H, Cui Y, Han X, Hu W, Sun M, Zhang Y, Wang P-H, Song G, Chen W, Lou J (2020) Liquid-liquid phase separation by SARS-CoV-2 nucleocapsid protein and RNA. Cell Res 30:1143–1145. https://doi.org/10.1038/s41422-020-00408-2. (PMID: 10.1038/s41422-020-00408-232901111)
      Iserman C, Roden C, Boerneke M, Sealfon R, McLaughlin G, Jungreis I, Park C, Boppana A, Fritch E, Hou YJ, Theesfeld C, Troyanskaya OG, Baric RS, Sheahan TP, Weeks K, Gladfelter AS (2020) Specific viral RNA drives the SARS CoV-2 nucleocapsid to phase separate. bioRxiv 2020.06.11.147199. https://doi.org/10.1101/2020.06.11.147199.
      Perdikari TM, Murthy AC, Ryan VH, Watters S, Naik MT, Fawzi NL (2020) SARS-CoV-2 nucleocapsid protein undergoes liquid-liquid phase separation stimulated by RNA and partitions into phases of human ribonucleoproteins. bioRxiv 2020.06.09.141101. https://doi.org/10.1101/2020.06.09.141101.
      Xu Z, Gong Q, Xia B, Groves B, Zimmermann M, Mugler C, Mu D, Matsumoto B, Seaman M, Ma D (2009) A role of histone H3 lysine 4 methyltransferase components in endosomal trafficking. J Cell Biol 186:343–353. https://doi.org/10.1083/jcb.200902146. (PMID: 10.1083/jcb.200902146196518922728403)
      Bailey JK, Fields AT, Cheng K, Lee A, Wagenaar E, Lagrois R, Schmidt B, Xia B, Ma D (2015) WD repeat-containing protein 5 (WDR5) localizes to the midbody and regulates abscission. J Biol Chem 290:8987–9001. https://doi.org/10.1074/jbc.M114.623611. (PMID: 10.1074/jbc.M114.623611256666104423688)
      Devaux P, von Messling V, Songsungthong W, Springfeld C, Cattaneo R (2007) Tyrosine 110 in the measles virus phosphoprotein is required to block STAT1 phosphorylation. Virology 360:72–83. https://doi.org/10.1016/j.virol.2006.09.049. (PMID: 10.1016/j.virol.2006.09.04917112561)
      Pfaller CK, Mastorakos GM, Matchett WE, Ma X, Samuel CE, Cattaneo R (2015) Measles virus defective interfering RNAs are generated frequently and early in the absence of C protein and can be destabilized by adenosine deaminase acting on RNA-1-like hypermutations. J Virol 89:7735–7747. https://doi.org/10.1128/JVI.01017-15. (PMID: 10.1128/JVI.01017-15259725414505647)
      Langereis MA, Rabouw HH, Holwerda M, Visser LJ, van Kuppeveld FJM (2015) Knockout of cGAS and STING rescues virus infection of plasmid DNA-transfected cells. J Virol 89:11169–11173. https://doi.org/10.1128/JVI.01781-15. (PMID: 10.1128/JVI.01781-15263118704621133)
    • Contributed Indexing:
      Keywords: FRAP; Fluorescence recovery after photobleaching; Host factors; Innate immune response; LLPS; Liquid-liquid phase separation; Measles virus; Mononegavirales; Paramyxovirus; Viral inclusion bodies
    • Publication Date:
      Date Created: 20240514 Date Completed: 20240514 Latest Revision: 20240514
    • Publication Date:
      20240515
    • Accession Number:
      10.1007/978-1-0716-3870-5_10
    • Accession Number:
      38743367