Wearing the Lab: Advances and Challenges in Skin-Interfaced Systems for Continuous Biochemical Sensing.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer Verlag Country of Publication: Germany NLM ID: 8307733 Publication Model: Print Cited Medium: Print ISSN: 0724-6145 (Print) Linking ISSN: 07246145 NLM ISO Abbreviation: Adv Biochem Eng Biotechnol Subsets: MEDLINE
    • Publication Information:
      Publication: Heidelberg : Springer Verlag
      Original Publication: Berlin ; New York : Springer-Verlag, [1983-
    • Subject Terms:
    • Abstract:
      Continuous, on-demand, and, most importantly, contextual data regarding individual biomarker concentrations exemplify the holy grail for personalized health and performance monitoring. This is well-illustrated for continuous glucose monitoring, which has drastically improved outcomes and quality of life for diabetic patients over the past 2 decades. Recent advances in wearable biosensing technologies (biorecognition elements, transduction mechanisms, materials, and integration schemes) have begun to make monitoring of other clinically relevant analytes a reality via minimally invasive skin-interfaced devices. However, several challenges concerning sensitivity, specificity, calibration, sensor longevity, and overall device lifetime must be addressed before these systems can be made commercially viable. In this chapter, a logical framework for developing a wearable skin-interfaced device for a desired application is proposed with careful consideration of the feasibility of monitoring certain analytes in sweat and interstitial fluid and the current development of the tools available to do so. Specifically, we focus on recent advancements in the engineering of biorecognition elements, the development of more robust signal transduction mechanisms, and novel integration schemes that allow for continuous quantitative analysis. Furthermore, we highlight the most compelling and promising prospects in the field of wearable biosensing and the challenges that remain in translating these technologies into useful products for disease management and for optimizing human performance.
      (© 2023. The Author(s), under exclusive license to Springer Nature Switzerland AG.)
    • References:
      Heikenfeld J, Jajack A, Rogers J, Gutruf P, Tian L, Pan T, Li R, Khine M, Kim J, Wang J, Kim J (2018) Wearable sensors: modalities, challenges, and prospects. Lab Chip 18:217–248. https://doi.org/10.1039/C7LC00914C. (PMID: 10.1039/C7LC00914C291821855771841)
      Janapala RN, Jayaraj JS, Fathima N, Kashif T, Usman N, Dasari A, Jahan N, Sachmechi I (2019) Continuous glucose monitoring versus self-monitoring of blood glucose in type 2 diabetes mellitus: a systematic review with meta-analysis. Cureus 11:e5634. https://doi.org/10.7759/cureus.5634. (PMID: 10.7759/cureus.5634317007376822918)
      Linu D, Dhanashri B, Onkar S (2023) Continuous glucose monitoring systems market by component (sensors, transmitters and receivers), by demography (child population, adult population), by end user (Hospital and Clinics, Home Healthcare, Others): global opportunity analysis and industry forecast, 2021–2031. Allied Market Res.
      Malon RSP, Sadir S, Balakrishnan M, Córcoles EP (2014) Saliva-based biosensors: noninvasive monitoring tool for clinical diagnostics. Biomed Res Int 2014:962903. https://doi.org/10.1155/2014/962903. (PMID: 10.1155/2014/962903252768354172994)
      Yu L, Yang Z, An M (2019) Lab on the eye: a review of tear-based wearable devices for medical use and health management. Biosci Trends 13:308–313. https://doi.org/10.5582/bst.2019.01178. (PMID: 10.5582/bst.2019.0117831527328)
      Heikenfeld J, Jajack A, Feldman B, Granger SW, Gaitonde S, Begtrup G, Katchman BA (2019) Accessing analytes in biofluids for peripheral biochemical monitoring. Nat Biotechnol 37:407–419. https://doi.org/10.1038/s41587-019-0040-3. (PMID: 10.1038/s41587-019-0040-330804536)
      Kim J, Campbell AS, de Ávila BE-F, Wang J (2019) Wearable biosensors for healthcare monitoring. Nat Biotechnol 37:389–406. https://doi.org/10.1038/s41587-019-0045-y. (PMID: 10.1038/s41587-019-0045-y308045348183422)
      Yang Y, Gao W (2019) Wearable and flexible electronics for continuous molecular monitoring. Chem Soc Rev 48:1465–1491. https://doi.org/10.1039/C7CS00730B. (PMID: 10.1039/C7CS00730B29611861)
      Zhao J, Guo H, Li J, Bandodkar AJ, Rogers JA (2019) Body-interfaced chemical sensors for noninvasive monitoring and analysis of biofluids. TRECHEM 1:559–571. https://doi.org/10.1016/j.trechm.2019.07.001. (PMID: 10.1016/j.trechm.2019.07.001)
      Kovatchev B, Cobelli C (2016) Glucose variability: timing, risk analysis, and relationship to Hypoglycemia in diabetes. Diabetes Care 39:502–510. https://doi.org/10.2337/dc15-2035. (PMID: 10.2337/dc15-2035272083664806774)
      Jagannath B, Lin K-C, Pali M, Sankhala D, Muthukumar S, Prasad S (2020) A sweat-based wearable enabling technology for real-time monitoring of IL-1β and CRP as potential markers for inflammatory bowel disease. Inflamm Bowel Dis 26:1533–1542. https://doi.org/10.1093/ibd/izaa191. (PMID: 10.1093/ibd/izaa19132720974)
      Hirsch IB (2018) Introduction: history of glucose monitoring. American Diabetes Association.
      Danne T, Nimri R, Battelino T, Bergenstal RM, Close KL, DeVries JH, Garg S, Heinemann L, Hirsch I, Amiel SA, Beck R, Bosi E, Buckingham B, Cobelli C, Dassau E, Doyle FJ, Heller S, Hovorka R, Jia W, Jones T, Kordonouri O, Kovatchev B, Kowalski A, Laffel L, Maahs D, Murphy HR, Nørgaard K, Parkin CG, Renard E, Saboo B, Scharf M, Tamborlane WV, Weinzimer SA, Phillip M (2017) International consensus on use of continuous glucose monitoring. Diabetes Care 40:1631–1640. https://doi.org/10.2337/dc17-1600. (PMID: 10.2337/dc17-1600291625836467165)
      Friedel M, Thompson IAP, Kasting G, Polsky R, Cunningham D, Soh HT, Heikenfeld J (2023) Opportunities and challenges in the diagnostic utility of dermal interstitial fluid. Nat Biomed Eng:1–15. https://doi.org/10.1038/s41551-022-00998-9.
      Young T, Clark V, Arroyo Curras N, Heikenfeld J (2023) Perspective – the feasibility of continuous protein monitoring in interstitial fluid. ECS Sens Plus. https://doi.org/10.1149/2754-2726/accd7e.
      Baker LB, Barnes KA, Anderson ML, Passe DH, Stofan JR (2016) Normative data for regional sweat sodium concentration and whole-body sweating rate in athletes. J Sports Sci 34:358–368. https://doi.org/10.1080/02640414.2015.1055291. (PMID: 10.1080/02640414.2015.105529126070030)
      Baker LB, Stofan JR, Hamilton AA, Horswill CA (2009) Comparison of regional patch collection vs. whole body washdown for measuring sweat sodium and potassium loss during exercise. J Appl Physiol 107:887–895. https://doi.org/10.1152/japplphysiol.00197.2009. (PMID: 10.1152/japplphysiol.00197.200919541738)
      Schiavon M, Dalla Man C, Dube S, Slama M, Kudva YC, Peyser T, Basu A, Basu R, Cobelli C (2015) Modeling plasma-to-interstitium glucose kinetics from multitracer plasma and microdialysis data. Diabetes Technol Ther 17:825–831. https://doi.org/10.1089/dia.2015.0119. (PMID: 10.1089/dia.2015.0119263132154649763)
      Moyer J, Wilson D, Finkelshtein I, Wong B, Potts R (2012) Correlation between sweat glucose and blood glucose in subjects with diabetes. Diabetes Technol Ther 14:398–402. https://doi.org/10.1089/dia.2011.0262. (PMID: 10.1089/dia.2011.026222376082)
      Green JM, Bishop PA, Muir IH, McLester Jr JR, Heath HE (2000) Effects of high and low blood lactate concentrations on sweat lactate response. Int J Sports Med 21:556–560. https://doi.org/10.1055/s-2000-8483. (PMID: 10.1055/s-2000-848311156274)
      Steckl AJ, Ray P (2018) Stress biomarkers in biological fluids and their point-of-use detection. ACS Sens 3:2025–2044. https://doi.org/10.1021/acssensors.8b00726. (PMID: 10.1021/acssensors.8b0072630264989)
      Jia M, Chew WM, Feinstein Y, Skeath P, Sternberg EM (2016) Quantification of cortisol in human eccrine sweat by liquid chromatography – tandem mass spectrometry. Analyst 141:2053–2060. https://doi.org/10.1039/C5AN02387D. (PMID: 10.1039/C5AN02387D268589985376102)
      Zhang F, Xue J, Shao J, Jia L (2012) Compilation of 222 drugs’ plasma protein binding data and guidance for study designs. Drug Discov Today 17:475–485. https://doi.org/10.1016/j.drudis.2011.12.018. (PMID: 10.1016/j.drudis.2011.12.01822210121)
      Zeitlinger MA, Derendorf H, Mouton JW, Cars O, Craig WA, Andes D, Theuretzbacher U (2011) Protein binding: do we ever learn? Antimicrob Agents Chemother 55:3067–3074. https://doi.org/10.1128/AAC.01433-10. (PMID: 10.1128/AAC.01433-10215370133122431)
      Jansson P-AE, Fowelin JP, Von Schenck HP, Smith UP, Lönnroth PN (1993) Measurement by microdialysis of the insulin concentration in subcutaneous interstitial fluid: importance of the endothelial barrier for insulin. Diabetes 42:1469–1473. https://doi.org/10.2337/diab.42.10.1469. (PMID: 10.2337/diab.42.10.14698375586)
      Bodenlenz M, Schaupp LA, Druml T, Sommer R, Wutte A, Schaller HC, Sinner F, Wach P, Pieber TR (2005) Measurement of interstitial insulin in human adipose and muscle tissue under moderate hyperinsulinemia by means of direct interstitial access. Am J Physiol Endocrinol Metab 289:E296–E300. https://doi.org/10.1152/ajpendo.00431.2004. (PMID: 10.1152/ajpendo.00431.200415769794)
      Myette-Côté É, Baba K, Brar R, Little JP (2017) Detection of salivary insulin following low versus high carbohydrate meals in humans. Nutrients 9:1204. https://doi.org/10.3390/nu9111204. (PMID: 10.3390/nu9111204290990485707676)
      Packer M (2003) Should B-type natriuretic peptide be measured routinely to guide the diagnosis and Management of chronic heart failure? Circulation 108:2950–2953. https://doi.org/10.1161/01.CIR.0000109205.35813.8E. (PMID: 10.1161/01.CIR.0000109205.35813.8E14676134)
      Joharimoghadam A, Tajdini M, Bozorgi A (2017) Salivary B-type natriuretic peptide: a new method for heart failure diagnosis and follow-up. Kardiol Pol 75:71–77. https://doi.org/10.5603/KP.a2016.0097. (PMID: 10.5603/KP.a2016.009727296284)
      Mahajan VS, Jarolim P (2011) How to interpret elevated cardiac troponin levels. Circulation 124:2350–2354. https://doi.org/10.1161/CIRCULATIONAHA.111.023697. (PMID: 10.1161/CIRCULATIONAHA.111.02369722105197)
      Mirzaii-Dizgah I, Riahi E (2013) Salivary troponin I as an indicator of myocardial infarction. Indian J Med Res 138:861–865. (PMID: 245216273978973)
      Sproston NR, Ashworth JJ (2018) Role of C-reactive protein at sites of inflammation and infection. Front Immunol 9:754. https://doi.org/10.3389/fimmu.2018.00754. (PMID: 10.3389/fimmu.2018.00754297069675908901)
      Iyengar A, Paulus JK, Gerlanc DJ, Maron JL (2014) Detection and potential utility of C-reactive protein in saliva of neonates. Front Pediatr 2:131. https://doi.org/10.3389/fped.2014.00131. (PMID: 10.3389/fped.2014.00131254852624239436)
      Katchman BA, Zhu M, Blain Christen J, Anderson KS (2018) Eccrine sweat as a biofluid for profiling immune biomarkers. Proteomics Clin Appl 12:1800010. https://doi.org/10.1002/prca.201800010. (PMID: 10.1002/prca.201800010298823736282813)
      Tokmakov AA, Kurotani A, Sato K-I (2021) Protein pI and intracellular localization. Front Mol Biosci 8.
      Cengiz E, Tamborlane WV (2009) A tale of two compartments: interstitial versus blood glucose monitoring. https://home.liebertpub.com/dia . https://doi.org/10.1089/dia.2009.0002 . Accessed 8 Apr 2023.
      Bailey T, Bode BW, Christiansen MP, Klaff LJ, Alva S (2015) The performance and usability of a factory-calibrated flash glucose monitoring system. Diabetes Technol Ther 17:787–794. https://doi.org/10.1089/dia.2014.0378. (PMID: 10.1089/dia.2014.0378261716594649725)
      Bequette BW (2010) Continuous glucose monitoring: real-time algorithms for calibration, filtering, and alarms. J Diabetes Sci Technol 4:404–418. (PMID: 10.1177/193229681000400222203074022864177)
      Taylor NA, Machado-Moreira CA (2013) Regional variations in transepidermal water loss, eccrine sweat gland density, sweat secretion rates and electrolyte composition in resting and exercising humans. Extrem Physiol Med 2:4. https://doi.org/10.1186/2046-7648-2-4. (PMID: 10.1186/2046-7648-2-4238494973710196)
      Sonner Z, Wilder E, Heikenfeld J, Kasting G, Beyette F, Swaile D, Sherman F, Joyce J, Hagen J, Kelley-Loughnane N, Naik R (2015) The microfluidics of the eccrine sweat gland, including biomarker partitioning, transport, and biosensing implications. Biomicrofluidics 9:031301. https://doi.org/10.1063/1.4921039. (PMID: 10.1063/1.4921039260457284433483)
      Hu Y, Converse C, Lyons MC, Hsu WH (2018) Neural control of sweat secretion: a review. Br J Dermatol 178:1246–1256. https://doi.org/10.1111/bjd.15808. (PMID: 10.1111/bjd.1580828714085)
      Cui C-Y, Schlessinger D (2015) Eccrine sweat gland development and sweat secretion. Exp Dermatol 24:644–650. https://doi.org/10.1111/exd.12773. (PMID: 10.1111/exd.12773260144725508982)
      Baker LB (2019) Physiology of sweat gland function: the roles of sweating and sweat composition in human health. Temperature (Austin) 6:211–259. https://doi.org/10.1080/23328940.2019.1632145. (PMID: 10.1080/23328940.2019.163214531608304)
      Brothers MC, DeBrosse M, Grigsby CC, Naik RR, Hussain SM, Heikenfeld J, Kim SS (2019) Achievements and challenges for real-time sensing of analytes in sweat within wearable platforms. Acc Chem Res 52:297–306. https://doi.org/10.1021/acs.accounts.8b00555. (PMID: 10.1021/acs.accounts.8b0055530688433)
      Jia W, Bandodkar AJ, Valdés-Ramírez G, Windmiller JR, Yang Z, Ramírez J, Chan G, Wang J (2013) Electrochemical tattoo biosensors for real-time noninvasive lactate monitoring in human perspiration. Anal Chem 85:6553–6560. https://doi.org/10.1021/ac401573r. (PMID: 10.1021/ac401573r23815621)
      Bandodkar AJ, Molinnus D, Mirza O, Guinovart T, Windmiller JR, Valdés-Ramírez G, Andrade FJ, Schöning MJ, Wang J (2014) Epidermal tattoo potentiometric sodium sensors with wireless signal transduction for continuous non-invasive sweat monitoring. Biosens Bioelectron 54:603–609. https://doi.org/10.1016/j.bios.2013.11.039. (PMID: 10.1016/j.bios.2013.11.03924333582)
      Gao W, Emaminejad S, Nyein HYY, Challa S, Chen K, Peck A, Fahad HM, Ota H, Shiraki H, Kiriya D, Lien D-H, Brooks GA, Davis RW, Javey A (2016) Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529:509–514. https://doi.org/10.1038/nature16521. (PMID: 10.1038/nature16521268190444996079)
      Imani S, Bandodkar AJ, Mohan AMV, Kumar R, Yu S, Wang J, Mercier PP (2016) A wearable chemical–electrophysiological hybrid biosensing system for real-time health and fitness monitoring. Nat Commun 7:11650. https://doi.org/10.1038/ncomms11650. (PMID: 10.1038/ncomms11650272121404879240)
      Gao F, Liu C, Zhang L, Liu T, Wang Z, Song Z, Cai H, Fang Z, Chen J, Wang J, Han M, Wang J, Lin K, Wang R, Li M, Mei Q, Ma X, Liang S, Gou G, Xue N (2023) Wearable and flexible electrochemical sensors for sweat analysis: a review. Microsyst Nanoeng 9:1–21. https://doi.org/10.1038/s41378-022-00443-6. (PMID: 10.1038/s41378-022-00443-6365975119805458)
      Choi J, Xue Y, Xia W, Ray TR, Reeder JT, Bandodkar AJ, Kang D, Xu S, Huang Y, Rogers JA (2017) Soft, skin-mounted microfluidic systems for measuring secretory fluidic pressures generated at the surface of the skin by eccrine sweat glands. Lab Chip 17:2572–2580. https://doi.org/10.1039/C7LC00525C. (PMID: 10.1039/C7LC00525C286649545561737)
      Koh A, Kang D, Xue Y, Lee S, Pielak RM, Kim J, Hwang T, Min S, Banks A, Bastien P, Manco MC, Wang L, Ammann KR, Jang K-I, Won P, Han S, Ghaffari R, Paik U, Slepian MJ, Balooch G, Huang Y, Rogers JA (2016) A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci Transl Med 8:366ra165. https://doi.org/10.1126/scitranslmed.aaf2593. (PMID: 10.1126/scitranslmed.aaf2593278818265429097)
      Martín A, Kim J, Kurniawan JF, Sempionatto JR, Moreto JR, Tang G, Campbell AS, Shin A, Lee MY, Liu X, Wang J (2017) Epidermal microfluidic electrochemical detection system: enhanced sweat sampling and metabolite detection. ACS Sens 2:1860–1868. https://doi.org/10.1021/acssensors.7b00729. (PMID: 10.1021/acssensors.7b0072929152973)
      Hauke A, Simmers P, Ojha YR, Cameron BD, Ballweg R, Zhang T, Twine N, Brothers M, Gomez E, Heikenfeld J (2018) Complete validation of a continuous and blood-correlated sweat biosensing device with integrated sweat stimulation. Lab Chip 18:3750–3759. https://doi.org/10.1039/C8LC01082J. (PMID: 10.1039/C8LC01082J30443648)
      Twine NB, Norton RM, Brothers MC, Hauke A, Gomez EF, Heikenfeld J (2018) Open nanofluidic films with rapid transport and no analyte exchange for ultra-low sample volumes. Lab Chip 18:2816–2825. https://doi.org/10.1039/C8LC00186C. (PMID: 10.1039/C8LC00186C30027962)
      Choi J, Chen S, Deng Y, Xue Y, Reeder JT, Franklin D, Oh YS, Model JB, Aranyosi AJ, Lee SP, Ghaffari R, Huang Y, Rogers JA (2021) Skin-interfaced microfluidic systems that combine hard and soft materials for demanding applications in sweat capture and analysis. Adv Healthc Mater 10:2000722. https://doi.org/10.1002/adhm.202000722. (PMID: 10.1002/adhm.202000722)
      Kim J, Jeerapan I, Imani S, Cho TN, Bandodkar A, Cinti S, Mercier PP, Wang J (2016) Noninvasive alcohol monitoring using a wearable tattoo-based iontophoretic-biosensing system. ACS Sens 1:1011–1019. https://doi.org/10.1021/acssensors.6b00356. (PMID: 10.1021/acssensors.6b00356)
      Gibson LE, Cooke RE (1959) A test for concentration of electrolytes in sweat in cystic fibrosis of the pancreas utilizing pilocarpine by iontophoresis. Pediatrics 23:545–549. (PMID: 10.1542/peds.23.3.54513633369)
      Pandey PC, Shukla S, Skoog SA, Boehm RD, Narayan RJ (2019) Current advancements in transdermal biosensing and targeted drug delivery. Sensors 19:1028. https://doi.org/10.3390/s19051028. (PMID: 10.3390/s19051028308234356427209)
      Kim J, Sempionatto JR, Imani S, Hartel MC, Barfidokht A, Tang G, Campbell AS, Mercier PP, Wang J (2018) Simultaneous monitoring of sweat and interstitial fluid using a single wearable biosensor platform. Adv Sci (Weinh) 5:1800880. https://doi.org/10.1002/advs.201800880. (PMID: 10.1002/advs.20180088030356971)
      Emaminejad S, Gao W, Wu E, Davies ZA, Yin Yin Nyein H, Challa S, Ryan SP, Fahad HM, Chen K, Shahpar Z, Talebi S, Milla C, Javey A, Davis RW (2017) Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform. Proc Natl Acad Sci 114:4625–4630. https://doi.org/10.1073/pnas.1701740114. (PMID: 10.1073/pnas.1701740114284166675422810)
      Simmers P, Li SK, Kasting G, Heikenfeld J (2018) Prolonged and localized sweat stimulation by iontophoretic delivery of the slowly-metabolized cholinergic agent carbachol. J Dermatol Sci 89:40–51. https://doi.org/10.1016/j.jdermsci.2017.10.013. (PMID: 10.1016/j.jdermsci.2017.10.01329128285)
      Sonner Z, Wilder E, Gaillard T, Kasting G, Heikenfeld J (2017) Integrated sudomotor axon reflex sweat stimulation for continuous sweat analyte analysis with individuals at rest. Lab Chip 17:2550–2560. https://doi.org/10.1039/C7LC00364A. (PMID: 10.1039/C7LC00364A28675233)
      Simmers P, Yuan Y, Sonner Z, Heikenfeld J (2018) Membrane isolation of repeated-use sweat stimulants for mitigating both direct dermal contact and sweat dilution. Biomicrofluidics 12:034101. https://doi.org/10.1063/1.5023396. (PMID: 10.1063/1.5023396308678586404941)
      Yuan Y, DeBrosse M, Brothers M, Kim S, Sereda A, Ivanov NV, Hussain S, Heikenfeld J (2021) Oil-membrane protection of electrochemical sensors for fouling- and pH-insensitive detection of lipophilic analytes. ACS Appl Mater Interfaces 13:53553–53563. https://doi.org/10.1021/acsami.1c14175. (PMID: 10.1021/acsami.1c1417534665962)
      Peng R, Sonner Z, Hauke A, Wilder E, Kasting J, Gaillard T, Swaille D, Sherman F, Mao X, Hagen J, Murdock R, Heikenfeld J (2016) A new oil/membrane approach for integrated sweat sampling and sensing: sample volumes reduced from μL’s to nL’s and reduction of analyte contamination from skin. Lab Chip 16:4415–4423. https://doi.org/10.1039/C6LC01013J. (PMID: 10.1039/C6LC01013J27752680)
      Lee H, Choi TK, Lee YB, Cho HR, Ghaffari R, Wang L, Choi HJ, Chung TD, Lu N, Hyeon T, Choi SH, Kim D-H (2016) A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat Nanotechnol 11:566–572. https://doi.org/10.1038/nnano.2016.38. (PMID: 10.1038/nnano.2016.3826999482)
      Lee H, Song C, Hong YS, Kim MS, Cho HR, Kang T, Shin K, Choi SH, Hyeon T, Kim D-H (2017) Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module. Sci Adv 3:e1601314. https://doi.org/10.1126/sciadv.1601314. (PMID: 10.1126/sciadv.1601314283450305342654)
      Wiorek A, Parrilla M, Cuartero M, Crespo GA (2020) Epidermal patch with glucose biosensor: pH and temperature correction toward more accurate sweat analysis during sport practice. Anal Chem 92:10153–10161. https://doi.org/10.1021/acs.analchem.0c02211. (PMID: 10.1021/acs.analchem.0c02211325886177467422)
      Xuan X, Pérez-Ràfols C, Chen C, Cuartero M, Crespo GA (2021) Lactate biosensing for reliable on-body sweat analysis. ACS Sens 6:2763–2771. https://doi.org/10.1021/acssensors.1c01009. (PMID: 10.1021/acssensors.1c01009342289198397467)
      Ibáñez-Redín G, Rosso Cagnani G, Gomes NO, Raymundo-Pereira PA, Machado SAS, Gutierrez MA, Krieger JE, Oliveira ON (2023) Wearable potentiometric biosensor for analysis of urea in sweat. Biosens Bioelectron 223:114994. https://doi.org/10.1016/j.bios.2022.114994. (PMID: 10.1016/j.bios.2022.11499436577175)
      Wang M, Yang Y, Min J, Song Y, Tu J, Mukasa D, Ye C, Xu C, Heflin N, McCune JS, Hsiai TK, Li Z, Gao W (2022) A wearable electrochemical biosensor for the monitoring of metabolites and nutrients. Nat Biomed Eng 6:1225–1235. https://doi.org/10.1038/s41551-022-00916-z. (PMID: 10.1038/s41551-022-00916-z3597092810432133)
      Sato K, Kang WH, Saga K, Sato KT (1989) Biology of sweat glands and their disorders. I. Normal sweat gland function. J Am Acad Dermatol 20:537–563. https://doi.org/10.1016/S0190-9622(89)70063-3. (PMID: 10.1016/S0190-9622(89)70063-32654204)
      Baker LB (2017) Sweating rate and sweat sodium concentration in athletes: a review of methodology and intra/interindividual variability. Sports Med 47:111–128. https://doi.org/10.1007/s40279-017-0691-5. (PMID: 10.1007/s40279-017-0691-5283321165371639)
      Jajack A, Brothers M, Kasting G, Heikenfeld J (2018) Enhancing glucose flux into sweat by increasing paracellular permeability of the sweat gland. PloS One 13:e0200009. https://doi.org/10.1371/journal.pone.0200009. (PMID: 10.1371/journal.pone.0200009300112926047769)
      Nyein HYY, Tai L-C, Ngo QP, Chao M, Zhang GB, Gao W, Bariya M, Bullock J, Kim H, Fahad HM, Javey A (2018) A wearable microfluidic sensing patch for dynamic sweat secretion analysis. ACS Sens 3:944–952. https://doi.org/10.1021/acssensors.7b00961. (PMID: 10.1021/acssensors.7b0096129741360)
      Ono S, Egawa G, Kabashima K (2017) Regulation of blood vascular permeability in the skin. Inflamm Regen 37:11. https://doi.org/10.1186/s41232-017-0042-9. (PMID: 10.1186/s41232-017-0042-9292597105725833)
      Sarin H (2010) Physiologic upper limits of pore size of different blood capillary types and another perspective on the dual pore theory of microvascular permeability. Vasc Cell 2:14. https://doi.org/10.1186/2040-2384-2-14. (PMID: 10.1186/2040-2384-2-14)
      Starling EH (1896) On the absorption of fluids from the connective tissue spaces. J Physiol 19:312–326. https://doi.org/10.1113/jphysiol.1896.sp000596. (PMID: 10.1113/jphysiol.1896.sp000596169923251512609)
      Levick JR, Michel CC (2010) Microvascular fluid exchange and the revised Starling principle. Cardiovasc Res 87:198–210. https://doi.org/10.1093/cvr/cvq062. (PMID: 10.1093/cvr/cvq06220200043)
      Michel CC, Woodcock TE, Curry F-RE (2020) Understanding and extending the Starling principle. Acta Anaesthesiol Scand 64:1032–1037. https://doi.org/10.1111/aas.13603. (PMID: 10.1111/aas.1360332270491)
      Friedman A (2010) Fluid and electrolyte therapy: a primer. Pediatr Nephrol 25:843–846. https://doi.org/10.1007/s00467-009-1189-7. (PMID: 10.1007/s00467-009-1189-719444484)
      Gonzalez D, Schmidt S, Derendorf H (2013) Importance of relating efficacy measures to unbound drug concentrations for anti-infective agents. Clin Microbiol Rev 26:274–288. https://doi.org/10.1128/CMR.00092-12. (PMID: 10.1128/CMR.00092-12235544173623378)
      Azizi PM, Zyla RE, Guan S, Wang C, Liu J, Bolz S-S, Heit B, Klip A, Lee WL (2015) Clathrin-dependent entry and vesicle-mediated exocytosis define insulin transcytosis across microvascular endothelial cells. Mol Biol Cell 26:740–750. https://doi.org/10.1091/mbc.E14-08-1307. (PMID: 10.1091/mbc.E14-08-1307255404314325843)
      Bendayan M, Rasio EA (1996) Transport of insulin and albumin by the microvascular endothelium of the rete mirabile. J Cell Sci 109:1857–1864. https://doi.org/10.1242/jcs.109.7.1857. (PMID: 10.1242/jcs.109.7.18578832408)
      Milici AJ, Watrous NE, Stukenbrok H, Palade GE (1987) Transcytosis of albumin in capillary endothelium. J Cell Biol 105:2603–2612. https://doi.org/10.1083/jcb.105.6.2603. (PMID: 10.1083/jcb.105.6.26033320050)
      Bendayan M (2002) Morphological and cytochemical aspects of capillary permeability. Microsc Res Tech 57:327–349. https://doi.org/10.1002/jemt.10088. (PMID: 10.1002/jemt.1008812112441)
      Komarova YA, Kruse K, Mehta D, Malik AB (2017) Protein interactions at endothelial junctions and Signaling mechanisms regulating endothelial permeability. Circ Res 120:179–206. https://doi.org/10.1161/CIRCRESAHA.116.306534. (PMID: 10.1161/CIRCRESAHA.116.306534280577935225667)
      Tierney MJ, Tamada JA, Potts RO, Jovanovic L, Garg S, Cygnus Research Team (2001) Clinical evaluation of the GlucoWatch biographer: a continual, non-invasive glucose monitor for patients with diabetes. Biosens Bioelectron 16:621–629. https://doi.org/10.1016/s0956-5663(01)00189-0. (PMID: 10.1016/s0956-5663(01)00189-011679237)
      Vashist SK (2012) Non-invasive glucose monitoring technology in diabetes management: a review. Anal Chim Acta 750:16–27. https://doi.org/10.1016/j.aca.2012.03.043. (PMID: 10.1016/j.aca.2012.03.04323062426)
      Bandodkar AJ, Jia W, Yardımcı C, Wang X, Ramirez J, Wang J (2015) Tattoo-based noninvasive glucose monitoring: a proof-of-concept study. Anal Chem 87:394–398. https://doi.org/10.1021/ac504300n. (PMID: 10.1021/ac504300n25496376)
      De la Paz E, Barfidokht A, Rios S, Brown C, Chao E, Wang J (2021) Extended noninvasive glucose monitoring in the interstitial fluid using an epidermal biosensing patch. Anal Chem 93:12767–12775. https://doi.org/10.1021/acs.analchem.1c02887. (PMID: 10.1021/acs.analchem.1c0288734477377)
      De la Paz E, Saha T, Del Caño R, Seker S, Kshirsagar N, Wang J (2023) Non-invasive monitoring of interstitial fluid lactate through an epidermal iontophoretic device. Talanta 254:124122. https://doi.org/10.1016/j.talanta.2022.124122. (PMID: 10.1016/j.talanta.2022.12412236459870)
      Chen Y, Lu S, Zhang S, Li Y, Qu Z, Chen Y, Lu B, Wang X, Feng X (2017) Skin-like biosensor system via electrochemical channels for noninvasive blood glucose monitoring. Sci Adv 3:e1701629. https://doi.org/10.1126/sciadv.1701629. (PMID: 10.1126/sciadv.1701629292798645738229)
      Klonoff DC, Ahn D, Drincic A (2017) Continuous glucose monitoring: a review of the technology and clinical use. Diabetes Res Clin Pract 133:178–192. https://doi.org/10.1016/j.diabres.2017.08.005. (PMID: 10.1016/j.diabres.2017.08.00528965029)
      Cappon G, Vettoretti M, Sparacino G, Facchinetti A (2019) Continuous glucose monitoring sensors for diabetes management: a review of technologies and applications. Diabetes Metab J 43:383–397. https://doi.org/10.4093/dmj.2019.0121. (PMID: 10.4093/dmj.2019.0121314412466712232)
      Sharma S, Saeed A, Johnson C, Gadegaard N, Cass AE (2017) Rapid, low cost prototyping of transdermal devices for personal healthcare monitoring. Sens Bio-Sens Res 13:104–108. https://doi.org/10.1016/j.sbsr.2016.10.004. (PMID: 10.1016/j.sbsr.2016.10.004)
      Ming DK, Jangam S, Gowers SAN, Wilson R, Freeman DME, Boutelle MG, Cass AEG, O’Hare D, Holmes AH (2022) Real-time continuous measurement of lactate through a minimally invasive microneedle patch: a phase I clinical study. BMJ Innov 8. https://doi.org/10.1136/bmjinnov-2021-000864.
      Zheng H, GhavamiNejad A, GhavamiNejad P, Samarikhalaj M, Giacca A, Poudineh M (2022) Hydrogel microneedle-assisted assay integrating aptamer probes and fluorescence detection for reagentless biomarker quantification. ACS Sens 7:2387–2399. https://doi.org/10.1021/acssensors.2c01033. (PMID: 10.1021/acssensors.2c0103335866892)
      Lin S, Cheng X, Zhu J, Wang B, Jelinek D, Zhao Y, Wu T-Y, Horrillo A, Tan J, Yeung J, Yan W, Forman S, Coller HA, Milla C, Emaminejad S (2022) Wearable microneedle-based electrochemical aptamer biosensing for precision dosing of drugs with narrow therapeutic windows. Sci Adv 8:eabq4539. https://doi.org/10.1126/sciadv.abq4539. (PMID: 10.1126/sciadv.abq4539361499559506728)
      Ranamukhaarachchi SA, Padeste C, Dübner M, Häfeli UO, Stoeber B, Cadarso VJ (2016) Integrated hollow microneedle-optofluidic biosensor for therapeutic drug monitoring in sub-nanoliter volumes. Sci Rep 6:29075. https://doi.org/10.1038/srep29075. (PMID: 10.1038/srep29075273808894933911)
      Ranamukhaarachchi SA, Padeste C, Häfeli UO, Stoeber B, Cadarso VJ (2017) Design considerations of a hollow microneedle-optofluidic biosensing platform incorporating enzyme-linked assays. J Micromech Microeng 28:024002. https://doi.org/10.1088/1361-6439/aa9c9c. (PMID: 10.1088/1361-6439/aa9c9c)
      Parrilla M, Detamornrat U, Domínguez-Robles J, Donnelly RF, De Wael K (2022) Wearable hollow microneedle sensing patches for the transdermal electrochemical monitoring of glucose. Talanta 249:123695. https://doi.org/10.1016/j.talanta.2022.123695. (PMID: 10.1016/j.talanta.2022.12369535728453)
      Luo X, Yu Q, Liu Y, Gai W, Ye L, Yang L, Cui Y (2022) Closed-loop diabetes Minipatch based on a biosensor and an electroosmotic pump on hollow biodegradable microneedles. ACS Sens 7:1347–1360. https://doi.org/10.1021/acssensors.1c02337. (PMID: 10.1021/acssensors.1c0233735442623)
      Friedel M, Werbovetz B, Drexelius A, Plaxco K, Heikenfeld J (2023) Continuous molecular monitoring of human dermal interstitial fluid with microneedle-enabled electrochemical aptamer sensors.
      Heo YJ, Shibata H, Okitsu T, Kawanishi T, Takeuchi S (2011) Long-term in vivo glucose monitoring using fluorescent hydrogel fibers. Proc Natl Acad Sci 108:13399–13403. https://doi.org/10.1073/pnas.1104954108. (PMID: 10.1073/pnas.1104954108218080493158145)
      Joseph JI (2021) Review of the Long-term implantable Senseonics continuous glucose monitoring system and other continuous glucose monitoring systems. J Diabetes Sci Technol 15:167–173. https://doi.org/10.1177/1932296820911919. (PMID: 10.1177/193229682091191932345047)
      Stewart RH (2020) A modern view of the interstitial space in health and disease. Front Vet Sci 7.
      McClatchey PM, McClain ES, Williams IM, Malabanan CM, James FD, Lord PC, Gregory JM, Cliffel DE, Wasserman DH (2019) Fibrotic encapsulation is the dominant source of continuous glucose monitor delays. Diabetes 68:1892–1901. https://doi.org/10.2337/db19-0229. (PMID: 10.2337/db19-0229313994326754243)
      Sempionatto JR, Lasalde-Ramírez JA, Mahato K, Wang J, Gao W (2022) Wearable chemical sensors for biomarker discovery in the omics era. Nat Rev Chem 6:899–915. https://doi.org/10.1038/s41570-022-00439-w. (PMID: 10.1038/s41570-022-00439-w371177049666953)
      Clark Jr LC, Lyons C (1962) Electrode Systems for Continuous Monitoring in cardiovascular surgery. Ann N Y Acad Sci 102:29–45. https://doi.org/10.1111/j.1749-6632.1962.tb13623.x. (PMID: 10.1111/j.1749-6632.1962.tb13623.x14021529)
      Clark LC Jr (1970) Membrane polarographic electrode system and method with electrochemical compensation.
      Clark LC (1993) Guest editorial. Biosens Bioelectron 8:iii–vii. https://doi.org/10.1016/0956-5663(93)80035-N. (PMID: 10.1016/0956-5663(93)80035-N8499083)
      Guilbault GG, Montalvo JG (1969) Urea-specific enzyme electrode. J Am Chem Soc 91:2164–2165. https://doi.org/10.1021/ja01036a083. (PMID: 10.1021/ja01036a0835784180)
      Suzuki S, Takahashi F, Satoh I, Sonobe N (1975) Ethanol and lactic acid sensors using electrodes coated with dehydrogenase – collagen membranes. BCSJ 48:3246–3249. https://doi.org/10.1246/bcsj.48.3246. (PMID: 10.1246/bcsj.48.3246)
      Rocchitta G, Spanu A, Babudieri S, Latte G, Madeddu G, Galleri G, Nuvoli S, Bagella P, Demartis MI, Fiore V, Manetti R, Serra PA (2016) Enzyme biosensors for biomedical applications: strategies for safeguarding analytical performances in biological fluids. Sensors (Basel) 16:780. https://doi.org/10.3390/s16060780. (PMID: 10.3390/s1606078027249001)
      Heller A (1999) Implanted electrochemical glucose sensors for the management of diabetes. Annu Rev Biomed Eng 1:153–175. https://doi.org/10.1146/annurev.bioeng.1.1.153. (PMID: 10.1146/annurev.bioeng.1.1.15311701486)
      Heller A, Feldman B (2008) Electrochemical glucose sensors and their applications in diabetes management. Chem Rev 108:2482–2505. https://doi.org/10.1021/cr068069y. (PMID: 10.1021/cr068069y18465900)
      Sassolas A, Blum LJ, Leca-Bouvier BD (2012) Immobilization strategies to develop enzymatic biosensors. Biotechnol Adv 30:489–511. https://doi.org/10.1016/j.biotechadv.2011.09.003. (PMID: 10.1016/j.biotechadv.2011.09.00321951558)
      Gutteridge A, Thornton J (2004) Conformational change in substrate binding, catalysis and product release: an open and shut case? FEBS Lett 567:67–73. https://doi.org/10.1016/j.febslet.2004.03.067. (PMID: 10.1016/j.febslet.2004.03.06715165895)
      Feifel SC, Kapp A, Lisdat F (2014) Protein multilayer architectures on electrodes for analyte detection. In: Gu MB, Kim H-S (eds) Biosensors based on aptamers and enzymes. Springer, Berlin, pp 253–298.
      Lisdat F (2017) Trends in the layer-by-layer assembly of redox proteins and enzymes in bioelectrochemistry. Curr Opin Electrochem 5:165–172. https://doi.org/10.1016/j.coelec.2017.09.002. (PMID: 10.1016/j.coelec.2017.09.002)
      Nguyen HH, Lee SH, Lee UJ, Fermin CD, Kim M (2019) Immobilized enzymes in biosensor applications. Materials (Basel) 12:121. https://doi.org/10.3390/ma12010121. (PMID: 10.3390/ma1201012130609693)
      Rodriguez-Abetxuko A, Sánchez-deAlcázar D, Muñumer P, Beloqui A (2020) Tunable polymeric scaffolds for enzyme immobilization. Front Bioeng Biotechnol 8.
      Zhang Y, Ge J, Liu Z (2015) Enhanced activity of immobilized or chemically modified enzymes. ACS Catal 5:4503–4513. https://doi.org/10.1021/acscatal.5b00996. (PMID: 10.1021/acscatal.5b00996)
      Li C, Zhang R, Wang J, Wilson LM, Yan Y (2020) Protein engineering for improving and diversifying natural products biosynthesis. Trends Biotechnol 38:729–744. https://doi.org/10.1016/j.tibtech.2019.12.008. (PMID: 10.1016/j.tibtech.2019.12.008319545307274900)
      Stasyuk N, Smutok O, Demkiv O, Prokopiv T, Gayda G, Nisnevitch M, Gonchar M (2020) Synthesis, catalytic properties and application in biosensorics of nanozymes and electronanocatalysts: a review. Sensors (Basel) 20:4509. https://doi.org/10.3390/s20164509. (PMID: 10.3390/s2016450932806607)
      Wang X, Dong S, Wei H (2023) Recent advances on nanozyme-based electrochemical biosensors. Electroanalysis 35:e202100684. https://doi.org/10.1002/elan.202100684. (PMID: 10.1002/elan.202100684)
      Ricci F, Vallée-Bélisle A, Simon AJ, Porchetta A, Plaxco KW (2016) Using nature’s “Tricks” to rationally tune the binding properties of biomolecular receptors. Acc Chem Res 49:1884–1892. https://doi.org/10.1021/acs.accounts.6b00276. (PMID: 10.1021/acs.accounts.6b00276275645485660318)
      Vorobyeva M, Vorobjev P, Venyaminova A (2016) Multivalent aptamers: versatile tools for diagnostic and therapeutic applications. Molecules 21:1613. https://doi.org/10.3390/molecules21121613. (PMID: 10.3390/molecules21121613278980206274531)
      Pollard TD (2010) A guide to simple and informative binding assays. MBoC 21:4061–4067. https://doi.org/10.1091/mbc.e10-08-0683. (PMID: 10.1091/mbc.e10-08-0683211158502993736)
      Wang X, Hao Z, Olsen TR, Zhang W, Lin Q (2019) Measurements of aptamer–protein binding kinetics using graphene field-effect transistors. Nanoscale 11:12573–12581. https://doi.org/10.1039/C9NR02797A. (PMID: 10.1039/C9NR02797A31219127)
      Frutiger A, Tanno A, Hwu S, Tiefenauer RF, Vörös J, Nakatsuka N (2021) Nonspecific binding – fundamental concepts and consequences for biosensing applications. Chem Rev 121:8095–8160. https://doi.org/10.1021/acs.chemrev.1c00044. (PMID: 10.1021/acs.chemrev.1c0004434105942)
      Lubken RM, de Jong AM, Prins MWJ (2022) Real-time monitoring of biomolecules: dynamic response limits of affinity-based sensors. ACS Sens 7:286–295. https://doi.org/10.1021/acssensors.1c02307. (PMID: 10.1021/acssensors.1c02307349781908805115)
      Lubken RM, Bergkamp MH, de Jong AM, Prins MWJ (2021) Sensing methodology for the rapid monitoring of biomolecules at low concentrations over long time spans. ACS Sens 6:4471–4481. https://doi.org/10.1021/acssensors.1c01991. (PMID: 10.1021/acssensors.1c01991348543038715529)
      Maganzini N, Thompson I, Wilson B, Soh HT (2022) Pre-equilibrium biosensors as an approach towards rapid and continuous molecular measurements. Nat Commun 13:7072. https://doi.org/10.1038/s41467-022-34778-5. (PMID: 10.1038/s41467-022-34778-5364007929674706)
      Cristea C, Florea A, Tertiș M, Săndulescu R, Cristea C, Florea A, Tertiș M, Săndulescu R (2015) Immunosensors. IntechOpen.
      Poudineh M, Maikawa CL, Ma EY, Pan J, Mamerow D, Hang Y, Baker SW, Beirami A, Yoshikawa A, Eisenstein M, Kim S, Vučković J, Appel EA, Soh HT (2021) A fluorescence sandwich immunoassay for the real-time continuous detection of glucose and insulin in live animals. Nat Biomed Eng 5:53–63. https://doi.org/10.1038/s41551-020-00661-1. (PMID: 10.1038/s41551-020-00661-133349659)
      van Smeden L, Saris A, Sergelen K, de Jong AM, Yan J, Prins MWJ (2022) Reversible immunosensor for the continuous monitoring of cortisol in blood plasma sampled with microdialysis. ACS Sens 7:3041–3048. https://doi.org/10.1021/acssensors.2c01358. (PMID: 10.1021/acssensors.2c01358362558559623578)
      Munje RD, Muthukumar S, Jagannath B, Prasad S (2017) A new paradigm in sweat based wearable diagnostics biosensors using room temperature ionic liquids (RTILs). Sci Rep 7:1950. https://doi.org/10.1038/s41598-017-02133-0. (PMID: 10.1038/s41598-017-02133-0285123415434046)
      Song J, Wang R-M, Wang Y-Q, Tang Y-R, Deng A-P (2010) Hapten design, modification and preparation of artificial antigens. Chin J Anal Chem 38:1211–1218. https://doi.org/10.1016/S1872-2040(09)60063-3. (PMID: 10.1016/S1872-2040(09)60063-3)
      Gray A, Bradbury ARM, Knappik A, Plückthun A, Borrebaeck CAK, Dübel S (2020) Animal-free alternatives and the antibody iceberg. Nat Biotechnol 38:1234–1239. https://doi.org/10.1038/s41587-020-0687-9. (PMID: 10.1038/s41587-020-0687-933046876)
      Crivianu-Gaita V, Thompson M (2016) Aptamers, antibody scFv, and antibody fab’ fragments: An overview and comparison of three of the most versatile biosensor biorecognition elements. Biosens Bioelectron 85:32–45. https://doi.org/10.1016/j.bios.2016.04.091. (PMID: 10.1016/j.bios.2016.04.09127155114)
      Arshavsky-Graham S, Heuer C, Jiang X, Segal E (2022) Aptasensors versus immunosensors – which will prevail? Eng Life Sci 22:319–333. https://doi.org/10.1002/elsc.202100148. (PMID: 10.1002/elsc.202100148353825458961048)
      Fercher C, Jones ML, Mahler SM, Corrie SR (2021) Recombinant antibody engineering enables reversible binding for continuous protein biosensing. ACS Sens 6:764–776. https://doi.org/10.1021/acssensors.0c01510. (PMID: 10.1021/acssensors.0c0151033481587)
      Asaadi Y, Jouneghani FF, Janani S, Rahbarizadeh F (2021) A comprehensive comparison between camelid nanobodies and single chain variable fragments. Biomarker Res 9:87. https://doi.org/10.1186/s40364-021-00332-6. (PMID: 10.1186/s40364-021-00332-6)
      Filipiak MS, Rother M, Andoy NM, Knudsen AC, Grimm S, Bachran C, Swee LK, Zaumseil J, Tarasov A (2018) Highly sensitive, selective and label-free protein detection in physiological solutions using carbon nanotube transistors with nanobody receptors. Sens Actuators B 255:1507–1516. https://doi.org/10.1016/j.snb.2017.08.164. (PMID: 10.1016/j.snb.2017.08.164)
      Ruscito A, DeRosa MC (2016) Small-molecule binding aptamers: selection strategies, characterization, and applications. Front Chem 4.
      Liang S, Kinghorn AB, Voliotis M, Prague JK, Veldhuis JD, Tsaneva-Atanasova K, McArdle CA, Li RHW, Cass AEG, Dhillo WS, Tanner JA (2019) Measuring luteinising hormone pulsatility with a robotic aptamer-enabled electrochemical reader. Nat Commun 10:852. https://doi.org/10.1038/s41467-019-08799-6. (PMID: 10.1038/s41467-019-08799-6307872846382769)
      Takahashi M (2018) Aptamers targeting cell surface proteins. Biochimie 145:63–72. https://doi.org/10.1016/j.biochi.2017.11.019. (PMID: 10.1016/j.biochi.2017.11.01929198584)
      Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510. https://doi.org/10.1126/science.2200121. (PMID: 10.1126/science.22001212200121)
      Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822. https://doi.org/10.1038/346818a0. (PMID: 10.1038/346818a01697402)
      Song K-M, Lee S, Ban C (2012) Aptamers and their biological applications. Sensors 12:612–631. https://doi.org/10.3390/s120100612. (PMID: 10.3390/s120100612223684883279232)
      Duffy K, Arangundy-Franklin S, Holliger P (2020) Modified nucleic acids: replication, evolution, and next-generation therapeutics. BMC Biol 18:112. https://doi.org/10.1186/s12915-020-00803-6. (PMID: 10.1186/s12915-020-00803-6328786247469316)
      Odeh F, Nsairat H, Alshaer W, Ismail MA, Esawi E, Qaqish B, Bawab AA, Ismail SI (2019) Aptamers chemistry: chemical modifications and conjugation strategies. Molecules 25:3. https://doi.org/10.3390/molecules25010003. (PMID: 10.3390/molecules25010003318612776982925)
      Lai Q, Chen W, Zhang Y, Liu Z (2021) Application strategies of peptide nucleic acids toward electrochemical nucleic acid sensors. Analyst 146:5822–5835. https://doi.org/10.1039/D1AN00765C. (PMID: 10.1039/D1AN00765C34581324)
      Shaver A, Kundu N, Young BE, Vieira PA, Sczepanski JT, Arroyo-Currás N (2021) Nuclease hydrolysis does not drive the rapid signaling decay of DNA aptamer-based electrochemical sensors in biological fluids. Langmuir 37:5213–5221. https://doi.org/10.1021/acs.langmuir.1c00166. (PMID: 10.1021/acs.langmuir.1c00166338769378176561)
      Yang K-A, Chun H, Zhang Y, Pecic S, Nakatsuka N, Andrews AM, Worgall TS, Stojanovic MN (2017) High-affinity nucleic-acid-based receptors for steroids. ACS Chem Biol 12:3103–3112. https://doi.org/10.1021/acschembio.7b00634. (PMID: 10.1021/acschembio.7b00634290838586737899)
      Zhuo Z, Yu Y, Wang M, Li J, Zhang Z, Liu J, Wu X, Lu A, Zhang G, Zhang B (2017) Recent advances in SELEX technology and aptamer applications in biomedicine. Int J Mol Sci 18:2142. https://doi.org/10.3390/ijms18102142. (PMID: 10.3390/ijms18102142290368905666824)
      Gold L, Ayers D, Bertino J, Bock C, Bock A, Brody EN, Carter J, Dalby AB, Eaton BE, Fitzwater T, Flather D, Forbes A, Foreman T, Fowler C, Gawande B, Goss M, Gunn M, Gupta S, Halladay D, Heil J, Heilig J, Hicke B, Husar G, Janjic N, Jarvis T, Jennings S, Katilius E, Keeney TR, Kim N, Koch TH, Kraemer S, Kroiss L, Le N, Levine D, Lindsey W, Lollo B, Mayfield W, Mehan M, Mehler R, Nelson SK, Nelson M, Nieuwlandt D, Nikrad M, Ochsner U, Ostroff RM, Otis M, Parker T, Pietrasiewicz S, Resnicow DI, Rohloff J, Sanders G, Sattin S, Schneider D, Singer B, Stanton M, Sterkel A, Stewart A, Stratford S, Vaught JD, Vrkljan M, Walker JJ, Watrobka M, Waugh S, Weiss A, Wilcox SK, Wolfson A, Wolk SK, Zhang C, Zichi D (2010) Aptamer-based multiplexed proteomic technology for biomarker discovery. PloS One 5:e15004. https://doi.org/10.1371/journal.pone.0015004. (PMID: 10.1371/journal.pone.0015004211651483000457)
      Vaught JD, Bock C, Carter J, Fitzwater T, Otis M, Schneider D, Rolando J, Waugh S, Wilcox SK, Eaton BE (2010) Expanding the chemistry of DNA for in vitro selection. J Am Chem Soc 132:4141–4151. https://doi.org/10.1021/ja908035g. (PMID: 10.1021/ja908035g20201573)
      Roy A, Talukdar P (2021) Recent advances in bioactive artificial ionophores. Chembiochem 22:2925–2940. https://doi.org/10.1002/cbic.202100112. (PMID: 10.1002/cbic.202100112340432778596773)
      Bühlmann P, Chen LD (2012) Ion-selective electrodes with ionophore-doped sensing membranes. In: Supramolecular chemistry. Wiley.
      Parrilla M, Cuartero M, Crespo GA (2019) Wearable potentiometric ion sensors. Trends Anal Chem 110:303–320. https://doi.org/10.1016/j.trac.2018.11.024. (PMID: 10.1016/j.trac.2018.11.024)
      Sharma R, Deacon SE, Nowak D, George SE, Szymonik MP, Tang AAS, Tomlinson DC, Davies AG, McPherson MJ, Wälti C (2016) Label-free electrochemical impedance biosensor to detect human interleukin-8 in serum with sub-pg/ml sensitivity. Biosens Bioelectron 80:607–613. https://doi.org/10.1016/j.bios.2016.02.028. (PMID: 10.1016/j.bios.2016.02.028268972634785862)
      Vanova V, Mitrevska K, Milosavljevic V, Hynek D, Richtera L, Adam V (2021) Peptide-based electrochemical biosensors utilized for protein detection. Biosens Bioelectron 180:113087. https://doi.org/10.1016/j.bios.2021.113087. (PMID: 10.1016/j.bios.2021.11308733662844)
      Xiao X, Kuang Z, Slocik JM, Tadepalli S, Brothers M, Kim S, Mirau PA, Butkus C, Farmer BL, Singamaneni S, Hall CK, Naik RR (2018) Advancing peptide-based biorecognition elements for biosensors using in-silico evolution. ACS Sens 3:1024–1031. https://doi.org/10.1021/acssensors.8b00159. (PMID: 10.1021/acssensors.8b0015929741092)
      Kang D, Sun S, Kurnik M, Morales D, Dahlquist FW, Plaxco KW (2017) New architecture for reagentless, protein-based electrochemical biosensors. J Am Chem Soc 139:12113–12116. https://doi.org/10.1021/jacs.7b05953. (PMID: 10.1021/jacs.7b05953287895226021012)
      Ahmad OS, Bedwell TS, Esen C, Garcia-Cruz A, Piletsky SA (2019) Molecularly imprinted polymers in electrochemical and optical sensors. Trends Biotechnol 37:294–309. https://doi.org/10.1016/j.tibtech.2018.08.009. (PMID: 10.1016/j.tibtech.2018.08.00930241923)
      Pereira TC, Stradiotto NR (2019) Electrochemical sensing of lactate by using an electrode modified with molecularly imprinted polymers, reduced graphene oxide and gold nanoparticles. Microchim Acta 186:764. https://doi.org/10.1007/s00604-019-3898-3. (PMID: 10.1007/s00604-019-3898-3)
      Zaryanov NV, Nikitina VN, Karpova EV, Karyakina EE, Karyakin AA (2017) Nonenzymatic sensor for lactate detection in human sweat. Anal Chem 89:11198–11202. https://doi.org/10.1021/acs.analchem.7b03662. (PMID: 10.1021/acs.analchem.7b0366229065687)
      Zhang Q, Jiang D, Xu C, Ge Y, Liu X, Wei Q, Huang L, Ren X, Wang C, Wang Y (2020) Wearable electrochemical biosensor based on molecularly imprinted ag nanowires for noninvasive monitoring lactate in human sweat. Sens Actuators B 320:128325. https://doi.org/10.1016/j.snb.2020.128325. (PMID: 10.1016/j.snb.2020.128325)
      Parlak O, Keene ST, Marais A, Curto VF, Salleo A (2018) Molecularly selective nanoporous membrane-based wearable organic electrochemical device for noninvasive cortisol sensing. Sci Adv 4:eaar2904. https://doi.org/10.1126/sciadv.aar2904. (PMID: 10.1126/sciadv.aar2904300352166054510)
      Ansell RJ (2015) Characterization of the binding properties of molecularly imprinted polymers. In: Mattiasson B, Ye L (eds) Molecularly imprinted polymers in biotechnology. Springer, Cham, pp 51–93. (PMID: 10.1007/10_2015_316)
      Lahcen AA, Surya SG, Beduk T, Vijjapu MT, Lamaoui A, Durmus C, Timur S, Shekhah O, Mani V, Amine A, Eddaoudi M, Salama KN (2022) Metal–organic frameworks meet molecularly imprinted polymers: insights and prospects for sensor applications. ACS Appl Mater Interfaces 14:49399–49424. https://doi.org/10.1021/acsami.2c12842. (PMID: 10.1021/acsami.2c12842363154679650679)
      Han W, He H, Zhang L, Dong C, Zeng H, Dai Y, Xing L, Zhang Y, Xue X (2017) A self-powered wearable noninvasive electronic-skin for perspiration analysis based on piezo-biosensing unit matrix of enzyme/ZnO nanoarrays. ACS Appl Mater Interfaces 9:29526–29537. https://doi.org/10.1021/acsami.7b07990. (PMID: 10.1021/acsami.7b0799028782353)
      Arroyo-Currás N, Dauphin-Ducharme P, Scida K, Chávez JL (2020) From the beaker to the body: translational challenges for electrochemical, aptamer-based sensors. Anal Methods 12:1288–1310. https://doi.org/10.1039/D0AY00026D. (PMID: 10.1039/D0AY00026D)
      Watkins Z, Karajic A, Young T, White R, Heikenfeld J (2023) Week-long operation of electrochemical aptamer sensors: new insights into self-assembled monolayer degradation mechanisms and solutions for stability in serum at body temperature. ACS Sens 8:1119–1131. https://doi.org/10.1021/acssensors.2c02403. (PMID: 10.1021/acssensors.2c024033688400310443649)
      Clark V, Pellitero MA, Arroyo-Currás N (2023) Explaining the decay of nucleic acid-based sensors under continuous voltammetric interrogation. Anal Chem 95:4974–4983. https://doi.org/10.1021/acs.analchem.2c05158. (PMID: 10.1021/acs.analchem.2c051583688170810035425)
      Leung KK, Downs AM, Ortega G, Kurnik M, Plaxco KW (2021) Elucidating the mechanisms underlying the signal drift of electrochemical aptamer-based sensors in whole blood. ACS Sens. https://doi.org/10.1021/acssensors.1c01183.
      Long GL, Winefordner JD (1983) Limit of detection a closer look at the IUPAC definition. Anal Chem 55:712A–724A. https://doi.org/10.1021/ac00258a724. (PMID: 10.1021/ac00258a724)
      Chiang C-Y, Huang T-T, Wang C-H, Huang C-J, Tsung-Heng Tsai YS-N, Chen Y-T, Hong S-W, Hsu C-W, Chang T-C, Chau L-K (2020) Fiber optic nanogold-linked immunosorbent assay for rapid detection of procalcitonin at femtomolar concentration level. Biosens Bioelectron 151:111871. https://doi.org/10.1016/j.bios.2019.111871. (PMID: 10.1016/j.bios.2019.11187131999569)
      Hariri AA, Cartwright AP, Dory C, Gidi Y, Yee S, Fu K, Yang K, Wu D, Thompson IAP, Maganzini N, Feagin T, Young BE, Afshar BH, Eisenstein M, Digonnet M, Vuckovic J, Soh HT (2023) Continuous optical detection of small-molecule analytes in complex. Biomatrices. 2023.03.03.531030.
      Liu Y, Zhan L, Qin Z, Sackrison J, Bischof JC (2021) Ultrasensitive and highly specific lateral flow assays for point-of-care diagnosis. ACS Nano 15:3593–3611. https://doi.org/10.1021/acsnano.0c10035. (PMID: 10.1021/acsnano.0c1003533607867)
      Mayerhöfer TG, Pahlow S, Popp J (2020) The Bouguer-Beer-Lambert law: shining light on the obscure. ChemPhysChem 21:2029–2046. https://doi.org/10.1002/cphc.202000464. (PMID: 10.1002/cphc.202000464326629397540309)
      He R, Liu H, Fang T, Niu Y, Zhang H, Han F, Gao B, Li F, Xu F (2021) A colorimetric dermal tattoo biosensor fabricated by microneedle patch for multiplexed detection of health-related biomarkers. Adv Sci 8:2103030. https://doi.org/10.1002/advs.202103030. (PMID: 10.1002/advs.202103030)
      Hussain S, Park S (2020) Sweat-based noninvasive skin-patchable urea biosensors with photonic interpenetrating polymer network films integrated into PDMS chips. ACS Sens 5:3988–3998. https://doi.org/10.1021/acssensors.0c01757. (PMID: 10.1021/acssensors.0c0175733259201)
      Huang X, Xu D, Chen J, Liu J, Li Y, Song J, Ma X, Guo J (2018) Smartphone-based analytical biosensors. Analyst 143:5339–5351. https://doi.org/10.1039/C8AN01269E. (PMID: 10.1039/C8AN01269E30327808)
      Xu S, Wang Y, Zhou D, Kuang M, Fang D, Yang W, Wei S, Ma L (2016) A novel chemiluminescence sensor for sensitive detection of cholesterol based on the peroxidase-like activity of copper nanoclusters. Sci Rep 6:39157. https://doi.org/10.1038/srep39157. (PMID: 10.1038/srep39157279666505155213)
      Nicholas D, Logan KA, Sheng Y, Gao J, Farrell S, Dixon D, Callan B, McHale AP, Callan JF (2018) Rapid paper based colorimetric detection of glucose using a hollow microneedle device. Int J Pharm 547:244–249. https://doi.org/10.1016/j.ijpharm.2018.06.002. (PMID: 10.1016/j.ijpharm.2018.06.00229879505)
      Xiao J, Liu Y, Su L, Zhao D, Zhao L, Zhang X (2019) Microfluidic chip-based wearable colorimetric sensor for simple and facile detection of sweat glucose. Anal Chem 91:14803–14807. https://doi.org/10.1021/acs.analchem.9b03110. (PMID: 10.1021/acs.analchem.9b0311031553565)
      Yi J, Xianyu Y (2022) Gold nanomaterials-implemented wearable sensors for healthcare applications. Adv Funct Mater 32:2113012. https://doi.org/10.1002/adfm.202113012. (PMID: 10.1002/adfm.202113012)
      Song K-M, Cho M, Jo H, Min K, Jeon SH, Kim T, Han MS, Ku JK, Ban C (2011) Gold nanoparticle-based colorimetric detection of kanamycin using a DNA aptamer. Anal Biochem 415:175–181. https://doi.org/10.1016/j.ab.2011.04.007. (PMID: 10.1016/j.ab.2011.04.00721530479)
      Saraf N, Bosak A, Willenberg A, Das S, Willenberg BJ, Seal S (2017) Colorimetric detection of epinephrine using an optimized paper-based aptasensor. RSC Adv 7:49133–49143. https://doi.org/10.1039/C7RA10272K. (PMID: 10.1039/C7RA10272K)
      António M, Ferreira R, Vitorino R, Daniel-da-Silva AL (2020) A simple aptamer-based colorimetric assay for rapid detection of C-reactive protein using gold nanoparticles. Talanta 214:120868. https://doi.org/10.1016/j.talanta.2020.120868. (PMID: 10.1016/j.talanta.2020.12086832278414)
      Bandodkar AJ, Gutruf P, Choi J, Lee K, Sekine Y, Reeder JT, Jeang WJ, Aranyosi AJ, Lee SP, Model JB, Ghaffari R, Su C-J, Leshock JP, Ray T, Verrillo A, Thomas K, Krishnamurthi V, Han S, Kim J, Krishnan S, Hang T, Rogers JA (2019) Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat. Sci Adv 5:eaav3294. https://doi.org/10.1126/sciadv.aav3294. (PMID: 10.1126/sciadv.aav3294307464776357758)
      Kim J, Wu Y, Luan H, Yang DS, Cho D, Kwak SS, Liu S, Ryu H, Ghaffari R, Rogers JA (2022) A skin-interfaced, miniaturized microfluidic analysis and delivery system for colorimetric measurements of nutrients in sweat and supply of vitamins through the skin. Adv Sci 9:2103331. https://doi.org/10.1002/advs.202103331. (PMID: 10.1002/advs.202103331)
      Zhu DD, Zheng LW, Duong PK, Cheah RH, Liu XY, Wong JR, Wang WJ, Tien Guan ST, Zheng XT, Chen P (2022) Colorimetric microneedle patches for multiplexed transdermal detection of metabolites. Biosens Bioelectron 212:114412. https://doi.org/10.1016/j.bios.2022.114412. (PMID: 10.1016/j.bios.2022.11441235623253)
      Nawrot W, Drzozga K, Baluta S, Cabaj J, Malecha K (2018) A fluorescent biosensors for detection vital body fluids’ agents. Sensors (Basel) 18:2357. https://doi.org/10.3390/s18082357. (PMID: 10.3390/s1808235730042294)
      Kim S, Lee B, Reeder JT, Seo SH, Lee S-U, Hourlier-Fargette A, Shin J, Sekine Y, Jeong H, Oh YS, Aranyosi AJ, Lee SP, Model JB, Lee G, Seo M-H, Kwak SS, Jo S, Park G, Han S, Park I, Jung H-I, Ghaffari R, Koo J, Braun PV, Rogers JA (2020) Soft, skin-interfaced microfluidic systems with integrated immunoassays, fluorometric sensors, and impedance measurement capabilities. Proc Natl Acad Sci 117:27906–27915. https://doi.org/10.1073/pnas.2012700117. (PMID: 10.1073/pnas.2012700117331063947668081)
      Shibata H, Heo YJ, Okitsu T, Matsunaga Y, Kawanishi T, Takeuchi S (2010) Injectable hydrogel microbeads for fluorescence-based in vivo continuous glucose monitoring. Proc Natl Acad Sci 107:17894–17898. https://doi.org/10.1073/pnas.1006911107. (PMID: 10.1073/pnas.1006911107209213742964191)
      Wang H, Yi J, Velado D, Yu Y, Zhou S (2015) Immobilization of carbon dots in molecularly imprinted microgels for optical sensing of glucose at physiological pH. ACS Appl Mater Interfaces 7:15735–15745. https://doi.org/10.1021/acsami.5b04744. (PMID: 10.1021/acsami.5b0474426148139)
      Kanick SC, Schneider PA, Klitzman B, Wisniewski NA, Rebrin K (2019) Continuous monitoring of interstitial tissue oxygen using subcutaneous oxygen microsensors: in vivo characterization in healthy volunteers. Microvasc Res 124:6–18. https://doi.org/10.1016/j.mvr.2019.02.002. (PMID: 10.1016/j.mvr.2019.02.002307428446570499)
      Dong P, Ko BS, Lomeli KA, Clark EC, McShane MJ, Grunlan MA (2022) A glucose biosensor based on phosphorescence lifetime sensing and a thermoresponsive membrane. Macromol Rapid Commun 43:2100902. https://doi.org/10.1002/marc.202100902. (PMID: 10.1002/marc.202100902)
      Li N, Ho C-M (2008) Aptamer-based optical probes with separated molecular recognition and signal transduction modules. J Am Chem Soc 130:2380–2381. https://doi.org/10.1021/ja076787b. (PMID: 10.1021/ja076787b18247609)
      Verma AK, Noumani A, Yadav AK, Solanki PR (2023) FRET based biosensor: principle applications recent advances and challenges. Diagnostics 13:1375. https://doi.org/10.3390/diagnostics13081375. (PMID: 10.3390/diagnostics130813753718947610136898)
      Shaver A, Arroyo-Currás N (2022) The challenge of long-term stability for nucleic acid-based electrochemical sensors. Curr Opin Electrochem 32:100902. https://doi.org/10.1016/j.coelec.2021.100902. (PMID: 10.1016/j.coelec.2021.10090236092288)
      Pellitero MA, Shaver A, Arroyo-Currás N (2019) Critical review – approaches for the electrochemical interrogation of DNA-based sensors: a critical review. J Electrochem Soc 167:037529. https://doi.org/10.1149/2.0292003JES. (PMID: 10.1149/2.0292003JES)
      Kang D, Zuo X, Yang R, Xia F, Plaxco KW, White RJ (2009) Comparing the properties of electrochemical-based DNA sensors employing different redox tags. Anal Chem 81:9109–9113. https://doi.org/10.1021/ac901811n. (PMID: 10.1021/ac901811n198106942783686)
      Pellitero MA, Kundu N, Sczepanski J, Arroyo-Currás N (2023) Os(II/III) complex supports pH-insensitive electrochemical DNA-based sensing with superior operational stability than the benchmark methylene blue reporter. Analyst 148:806–813. https://doi.org/10.1039/D2AN01901A. (PMID: 10.1039/D2AN01901A)
      Arroyo-Currás N, Dauphin-Ducharme P, Ortega G, Ploense KL, Kippin TE, Plaxco KW (2018) Subsecond-resolved molecular measurements in the living body using chronoamperometrically interrogated aptamer-based sensors. ACS Sens 3:360–366. https://doi.org/10.1021/acssensors.7b00787. (PMID: 10.1021/acssensors.7b0078729124939)
      Pellitero MA, Curtis SD, Arroyo-Currás N (2021) Interrogation of electrochemical aptamer-based sensors via peak-to-peak separation in cyclic voltammetry improves the temporal stability and batch-to-batch variability in biological fluids. ACS Sens 6:1199–1207. https://doi.org/10.1021/acssensors.0c02455. (PMID: 10.1021/acssensors.0c0245533599479)
      Chen A, Shah B (2013) Electrochemical sensing and biosensing based on square wave voltammetry. Anal Methods 5:2158–2173. https://doi.org/10.1039/C3AY40155C. (PMID: 10.1039/C3AY40155C)
      Xiao Y, Lubin AA, Heeger AJ, Plaxco KW (2005) Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor. Angew Chem Int Ed 44:5456–5459. https://doi.org/10.1002/anie.200500989. (PMID: 10.1002/anie.200500989)
      Ferguson BS, Hoggarth DA, Maliniak D, Ploense K, White RJ, Woodward N, Hsieh K, Bonham AJ, Eisenstein M, Kippin T, Plaxco KW, Soh HT (2013) Real-time, aptamer-based tracking of circulating therapeutic agents in living animals. Sci Transl Med 5:213ra165. https://doi.org/10.1126/scitranslmed.3007095. (PMID: 10.1126/scitranslmed.3007095242854844010950)
      Arroyo-Currás N, Somerson J, Vieira PA, Ploense KL, Kippin TE, Plaxco KW (2017) Real-time measurement of small molecules directly in awake, ambulatory animals. Proc Natl Acad Sci U S A 114:645–650. https://doi.org/10.1073/pnas.1613458114. (PMID: 10.1073/pnas.1613458114280699395278471)
      Dauphin-Ducharme P, Yang K, Arroyo-Currás N, Ploense KL, Zhang Y, Gerson J, Kurnik M, Kippin TE, Stojanovic MN, Plaxco KW (2019) Electrochemical aptamer-based sensors for improved therapeutic drug monitoring and high-precision, feedback-controlled drug delivery. ACS Sens 4:2832–2837. https://doi.org/10.1021/acssensors.9b01616. (PMID: 10.1021/acssensors.9b01616315562936886665)
      Downs AM, Plaxco KW (2022) Real-time, in vivo molecular monitoring using electrochemical aptamer based sensors: opportunities and challenges. ACS Sens 7:2823–2832. https://doi.org/10.1021/acssensors.2c01428. (PMID: 10.1021/acssensors.2c01428362053609840907)
      Wu Y, Tehrani F, Teymourian H, Mack J, Shaver A, Reynoso M, Kavner J, Huang N, Furmidge A, Duvvuri A, Nie Y, Laffel LM, Doyle FJI, Patti M-E, Dassau E, Wang J, Arroyo-Currás N (2022) Microneedle aptamer-based sensors for continuous, real-time therapeutic drug monitoring. Anal Chem 94:8335–8345. https://doi.org/10.1021/acs.analchem.2c00829. (PMID: 10.1021/acs.analchem.2c00829356536479202557)
      Friedel M, Werbovetz B, Drexelius A, Watkins Z, Bali A, Plaxco KW, Heikenfeld J (2023) Continuous molecular monitoring of human dermal interstitial fluid with microneedle-enabled electrochemical aptamer sensors. Lab Chip 23:3289–3299. https://doi.org/10.1039/D3LC00210A. (PMID: 10.1039/D3LC00210A37395135)
      Riedel M, Lisdat F (2018) Biosensorial application of impedance spectroscopy with focus on DNA detection. In: Schöning MJ, Poghossian A (eds) Label-free biosensing: advanced materials, devices and applications. Springer, Cham, pp 133–178.
      Lisdat F, Schäfer D (2008) The use of electrochemical impedance spectroscopy for biosensing. Anal Bioanal Chem 391:1555–1567. https://doi.org/10.1007/s00216-008-1970-7. (PMID: 10.1007/s00216-008-1970-718414837)
      Munje RD, Muthukumar S, Panneer Selvam A, Prasad S (2015) Flexible nanoporous tunable electrical double layer biosensors for sweat diagnostics. Sci Rep 5:14586. https://doi.org/10.1038/srep14586. (PMID: 10.1038/srep14586264205114588585)
      Lin K-C, Jagannath B, Muthukumar S, Prasad S (2017) Sub-picomolar label-free detection of thrombin using electrochemical impedance spectroscopy of aptamer-functionalized MoS 2. Analyst 142:2770–2780. https://doi.org/10.1039/C7AN00548B. (PMID: 10.1039/C7AN00548B28650005)
      Downs AM, Gerson J, Ploense KL, Plaxco KW, Dauphin-Ducharme P (2020) Subsecond-resolved molecular measurements using electrochemical phase interrogation of aptamer-based sensors. Anal Chem 92:14063–14068. https://doi.org/10.1021/acs.analchem.0c03109. (PMID: 10.1021/acs.analchem.0c0310932959647)
      Magar HS, Hassan RYA, Mulchandani A (2021) Electrochemical impedance spectroscopy (EIS): principles, construction, and biosensing applications. Sensors (Basel) 21:6578. https://doi.org/10.3390/s21196578. (PMID: 10.3390/s2119657834640898)
      Bergveld P (1970) Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans Biomed Eng BME-17:70–71. https://doi.org/10.1109/TBME.1970.4502688. (PMID: 10.1109/TBME.1970.4502688)
      Steve C, Jiri J (1980) Field effect transistor sensitive to penicillin. Anal Chem 52:1935–1937. https://doi.org/10.1021/ac50062a035. (PMID: 10.1021/ac50062a035)
      Janata J, Huber RJ (1980) Chemically sensitive field effect transistors. In: Freiser H (ed) Ion-selective electrodes in analytical chemistry. Springer US, Boston, pp 107–174. (PMID: 10.1007/978-1-4684-3776-8_3)
      Kaisti M (2017) Detection principles of biological and chemical FET sensors. Biosens Bioelectron 98:437–448. https://doi.org/10.1016/j.bios.2017.07.010. (PMID: 10.1016/j.bios.2017.07.01028711826)
      Ishikawa FN, Curreli M, Chang H-K, Chen P-C, Zhang R, Cote RJ, Thompson ME, Zhou C (2009) A calibration method for nanowire biosensors to suppress device-to-device variation. ACS Nano 3:3969–3976. https://doi.org/10.1021/nn9011384. (PMID: 10.1021/nn9011384199218122805439)
      Nehra A, Pal Singh K (2015) Current trends in nanomaterial embedded field effect transistor-based biosensor. Biosens Bioelectron 74:731–743. https://doi.org/10.1016/j.bios.2015.07.030. (PMID: 10.1016/j.bios.2015.07.03026210471)
      Meng Z, Stolz RM, Mendecki L, Mirica KA (2019) Electrically-transduced chemical sensors based on two-dimensional nanomaterials. Chem Rev 119:478–598. https://doi.org/10.1021/acs.chemrev.8b00311. (PMID: 10.1021/acs.chemrev.8b0031130604969)
      Bidinger SL, Keene ST, Han S, Plaxco KW, Malliaras GG, Hasan T (2022) Pulsed transistor operation enables miniaturization of electrochemical aptamer-based sensors. Sci Adv 8:eadd4111. https://doi.org/10.1126/sciadv.add4111. (PMID: 10.1126/sciadv.add4111363836569668304)
      Sung D, Koo J (2021) A review of BioFET’s basic principles and materials for biomedical applications. Biomed Eng Lett 11:85–96. https://doi.org/10.1007/s13534-021-00187-8. (PMID: 10.1007/s13534-021-00187-8338687598034276)
      Nakatsuka N, Yang K-A, Abendroth JM, Cheung K, Xu X, Yang H, Zhao C, Zhu B, Rim YS, Yang Y, Weiss PS, Stojanović MN, Andrews AM (2018) Aptamer-field-effect transistors overcome Debye length limitations for small-molecule sensing. Science 362:319–324. https://doi.org/10.1126/science.aao6750. (PMID: 10.1126/science.aao6750301903116663484)
      Wang B, Zhao C, Wang Z, Yang K-A, Cheng X, Liu W, Yu W, Lin S, Zhao Y, Cheung KM, Lin H, Hojaiji H, Weiss PS, Stojanović MN, Tomiyama AJ, Andrews AM, Emaminejad S (2022) Wearable aptamer-field-effect transistor sensing system for noninvasive cortisol monitoring. Sci Adv 8:eabk0967. https://doi.org/10.1126/sciadv.abk0967. (PMID: 10.1126/sciadv.abk0967349859548730602)
      Joshi P, Mishra R, Narayan RJ (2021) Biosensing applications of carbon-based materials. Curr Opin Biomed Eng 18:100274. https://doi.org/10.1016/j.cobme.2021.100274. (PMID: 10.1016/j.cobme.2021.100274)
      Gooding JJ, Darwish N (2012) The rise of self-assembled monolayers for fabricating electrochemical biosensors – an interfacial perspective. Chem Rec 12:92–105. https://doi.org/10.1002/tcr.201100013. (PMID: 10.1002/tcr.20110001322131219)
      Kour R, Arya S, Young S-J, Gupta V, Bandhoria P, Khosla A (2020) Review – recent advances in carbon nanomaterials as electrochemical biosensors. J Electrochem Soc 167:037555. https://doi.org/10.1149/1945-7111/ab6bc4. (PMID: 10.1149/1945-7111/ab6bc4)
      Downs AM, Gerson J, Hossain MN, Ploense K, Pham M, Kraatz H-B, Kippin T, Plaxco KW (2021) Nanoporous gold for the miniaturization of in vivo electrochemical aptamer-based sensors. ACS Sens 6:2299–2306. https://doi.org/10.1021/acssensors.1c00354. (PMID: 10.1021/acssensors.1c0035434038076)
      Bukkitgar SD, Kumar S, Pratibha SS, Singh V, Raghava Reddy K, Sadhu V, Bagihalli GB, Shetti NP, Venkata Reddy C, Ravindranadh K, Naveen S (2020) Functional nanostructured metal oxides and its hybrid electrodes – recent advancements in electrochemical biosensing applications. Microchem J 159:105522. https://doi.org/10.1016/j.microc.2020.105522. (PMID: 10.1016/j.microc.2020.105522)
      Soleymani L, Fang Z, Sargent EH, Kelley SO (2009) Programming the detection limits of biosensors through controlled nanostructuring. Nat Nanotechnol 4:844–848. https://doi.org/10.1038/nnano.2009.276. (PMID: 10.1038/nnano.2009.27619893517)
      Holzinger M, Le Goff A, Cosnier S (2014) Nanomaterials for biosensing applications: a review. Front Chem 2.
      Li H, Dauphin-Ducharme P, Arroyo-Currás N, Tran CH, Vieira PA, Li S, Shin C, Somerson J, Kippin TE, Plaxco KW (2017) A biomimetic phosphatidylcholine-terminated monolayer greatly improves the in vivo performance of electrochemical aptamer-based sensors. Angew Chem Int Ed 56:7492–7495. https://doi.org/10.1002/anie.201700748. (PMID: 10.1002/anie.201700748)
      Shaver A, Curtis SD, Arroyo-Currás N (2020) Alkanethiol monolayer end groups affect the Long-term operational stability and Signaling of electrochemical, aptamer-based sensors in biological fluids. ACS Appl Mater Interfaces 12:11214–11223. https://doi.org/10.1021/acsami.9b22385. (PMID: 10.1021/acsami.9b2238532040915)
      Herrmann A, Haag R, Schedler U (2021) Hydrogels and their role in biosensing applications. Adv Healthc Mater 10:2100062. https://doi.org/10.1002/adhm.202100062. (PMID: 10.1002/adhm.202100062)
      Xu K, Lu Y, Takei K (2019) Multifunctional skin-inspired flexible sensor systems for wearable electronics. Adv Mater Technol 4:1800628. https://doi.org/10.1002/admt.201800628. (PMID: 10.1002/admt.201800628)
      Wong SHD, Deen GR, Bates JS, Maiti C, Lam CYK, Pachauri A, AlAnsari R, Bělský P, Yoon J, Dodda JM (2023) Smart skin-adhesive patches: from design to biomedical applications. Adv Funct Mater 33:2213560. https://doi.org/10.1002/adfm.202213560. (PMID: 10.1002/adfm.202213560)
      Myhre P, Smith G (2023) Evaluation of wear time for various extended Wear adhesive tapes on human volunteers: 21-day study. 3M Med Mater Technol.
      Brown EW, Glasscott MW, Conley K, Barr J, Ray JD, Moores LC, Netchaev A (2022) ACEstat: a DIY guide to unlocking the potential of integrated circuit Potentiostats for open-source electrochemical analysis. Anal Chem 94:4906–4912. https://doi.org/10.1021/acs.analchem.1c04226. (PMID: 10.1021/acs.analchem.1c0422635258920)
      Grattieri M, Minteer SD (2018) Self-powered biosensors. ACS Sens 3:44–53. https://doi.org/10.1021/acssensors.7b00818. (PMID: 10.1021/acssensors.7b0081829161018)
      O’Connor TF, Zaretski AV, Savagatrup S, Printz AD, Wilkes CD, Diaz MI, Sawyer EJ, Lipomi DJ (2016) Wearable organic solar cells with high cyclic bending stability: materials selection criteria. Sol Energy Mater Sol Cells 144:438–444. https://doi.org/10.1016/j.solmat.2015.09.049. (PMID: 10.1016/j.solmat.2015.09.049)
      Pinyou P, Conzuelo F, Sliozberg K, Vivekananthan J, Contin A, Pöller S, Plumeré N, Schuhmann W (2015) Coupling of an enzymatic biofuel cell to an electrochemical cell for self-powered glucose sensing with optical readout. Bioelectrochemistry 106:22–27. https://doi.org/10.1016/j.bioelechem.2015.04.003. (PMID: 10.1016/j.bioelechem.2015.04.00325892686)
      Rose DP, Ratterman ME, Griffin DK, Hou L, Kelley-Loughnane N, Naik RR, Hagen JA, Papautsky I, Heikenfeld JC (2015) Adhesive RFID sensor patch for monitoring of sweat electrolytes. IEEE Trans Biomed Eng 62:1457–1465. https://doi.org/10.1109/TBME.2014.2369991. (PMID: 10.1109/TBME.2014.236999125398174)
      Idili A, Parolo C, Ortega G, Plaxco KW (2019) Calibration-free measurement of phenylalanine levels in the blood using an electrochemical aptamer-based sensor suitable for point-of-care applications. ACS Sens 4:3227–3233. https://doi.org/10.1021/acssensors.9b01703. (PMID: 10.1021/acssensors.9b01703317895058097980)
      McHenry A, Friedel M, Heikenfeld J (2022) Voltammetry peak tracking for longer-lasting and reference-electrode-free electrochemical biosensors. Biosensors 12:782. https://doi.org/10.3390/bios12100782. (PMID: 10.3390/bios12100782362909209599936)
      Goode JA, Rushworth JVH, Millner PA (2015) Biosensor regeneration: a review of common techniques and outcomes. Langmuir 31:6267–6276. https://doi.org/10.1021/la503533g. (PMID: 10.1021/la503533g25402969)
      He W, Wang C, Wang H, Jian M, Lu W, Liang X, Zhang X, Yang F, Zhang Y (2019) Integrated textile sensor patch for real-time and multiplex sweat analysis. Sci Adv 5:eaax0649. https://doi.org/10.1126/sciadv.aax0649. (PMID: 10.1126/sciadv.aax0649317236006839936)
      Hatamie A, Angizi S, Kumar S, Pandey CM, Simchi A, Willander M, Malhotra BD (2020) Review – textile based chemical and physical sensors for healthcare monitoring. J Electrochem Soc 167:037546. https://doi.org/10.1149/1945-7111/ab6827. (PMID: 10.1149/1945-7111/ab6827)
      von Woedtke T, Jülich W-D, Hartmann V, Stieber M, Abel PU (2002) Sterilization of enzyme glucose sensors: problems and concepts. Biosens Bioelectron 17:373–382. https://doi.org/10.1016/s0956-5663(01)00310-4. (PMID: 10.1016/s0956-5663(01)00310-4)
      Shah R, Yang Q, Mucic RC, Wang J-HL (2019) Enzyme matrices for use with ethylene oxide sterilization.
      Grucela MM, Gao J (2022) Method of packaging analyte sensors.
      Chung J, Sepunaru L, Plaxco KW (2022) On the disinfection of electrochemical aptamer-based sensors. ECS Sens Plus 1:011604. https://doi.org/10.1149/2754-2726/ac60b2. (PMID: 10.1149/2754-2726/ac60b2364520649703871)
      Jackson MA, Ahmann A, Shah VN (2021) Type 2 diabetes and the use of real-time continuous glucose monitoring. Diabetes Technol Ther 23:S-27. https://doi.org/10.1089/dia.2021.0007. (PMID: 10.1089/dia.2021.0007)
      Porchetta A, Vallée-Bélisle A, Plaxco KW, Ricci F (2012) Using distal-site mutations and allosteric inhibition to tune, extend, and narrow the useful dynamic range of aptamer-based sensors. J Am Chem Soc 134:20601–20604. https://doi.org/10.1021/ja310585e. (PMID: 10.1021/ja310585e23215257)
    • Contributed Indexing:
      Keywords: Biosensing; Electrochemical; Interstitial fluid; Optical; Sweat; Wearables
    • Publication Date:
      Date Created: 20240125 Date Completed: 20240529 Latest Revision: 20240611
    • Publication Date:
      20240612
    • Accession Number:
      10.1007/10_2023_238
    • Accession Number:
      38273210