A VEGF delivery system targeting MI improves angiogenesis and cardiac function based on the tropism of MSCs and layer-by-layer self-assembly.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      Myocardial infarction (MI) is a serious ischemic condition affecting many individuals around the world. Vascular endothelial growth factor (VEGF) is considered a promising factor for enhancing cardiac function by promoting angiogenesis. However, the lack of a suitable method of VEGF delivery to the MI area is a serious challenge. In this study, we screened a suitable delivery carrier with favorable biocompatibility that targeted the MI area using the strategy of an inherent structure derived from the body and that was based on characteristics of the MI. Mesenchymal stem cells (MSCs) are important infiltrating cells that are derived from blood and have an inherent tropism for the MI zone. We hypothesized that VEGF-encapsulated MSCs targeting MI tissue could improve cardiac function by angiogenesis based on the tropism of the MSCs to the MI area. We first developed VEGF-encapsulated MSCs using self-assembled gelatin and alginate polyelectrolytes to improve angiogenesis and cardiac function. In vitro, the results showed that VEGF-encapsulated MSCs had a sustained release of VEGF and tropism to SDF-1. In vivo, VEGF-encapsulated MSCs migrated to the MI area, enhanced cardiac function, perfused the infarcted area and promoted angiogenesis. These preclinical findings suggest that VEGF-loaded layer-by-layer self-assembled encapsulated MSCs may be a promising and minimally invasive therapy for treating MI. Furthermore, other drugs loaded to layer-by-layer self-assembled encapsulated MSCs may be promising therapies for treating other diseases. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Biomaterials is the property of Elsevier B.V. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)