Identifying immune signatures of sepsis to increase diagnostic accuracy in very preterm babies.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      Bacterial infections are a major cause of mortality in preterm babies, yet our understanding of early-life disease-associated immune dysregulation remains limited. Here, we combine multi-parameter flow cytometry, single-cell RNA sequencing and plasma analysis to longitudinally profile blood from very preterm babies (<32 weeks gestation) across episodes of invasive bacterial infection (sepsis). We identify a dynamically changing blood immune signature of sepsis, including lymphopenia, reduced dendritic cell frequencies and myeloid cell HLA-DR expression, which characterizes sepsis even when the common clinical marker of inflammation, C-reactive protein, is not elevated. Furthermore, single-cell RNA sequencing identifies upregulation of amphiregulin in leukocyte populations during sepsis, which we validate as a plasma analyte that correlates with clinical signs of disease, even when C-reactive protein is normal. This study provides insights into immune pathways associated with early-life sepsis and identifies immune analytes as potential diagnostic adjuncts to standard tests to guide targeted antibiotic prescribing. Bacterial infections and sepsis are a major cause of mortality in preterm babies. Here Das and colleagues assess the paediatric immune response to bacterial infection in very preterm babies and identify blood immune markers that could improve accuracy of diagnostics to rule-out sepsis and guide antibiotic treatment. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Nature Communications is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)