Developmental ROS individualizes organismal stress resistance and lifespan.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: MEDLINE
    • Publication Information:
      Publication: Basingstoke : Nature Publishing Group
      Original Publication: London, Macmillan Journals ltd.
    • Subject Terms:
    • Abstract:
      A central aspect of aging research concerns the question of when individuality in lifespan arises 1 . Here we show that a transient increase in reactive oxygen species (ROS), which occurs naturally during early development in a subpopulation of synchronized Caenorhabditis elegans, sets processes in motion that increase stress resistance, improve redox homeostasis and ultimately prolong lifespan in those animals. We find that these effects are linked to the global ROS-mediated decrease in developmental histone H3K4me3 levels. Studies in HeLa cells confirmed that global H3K4me3 levels are ROS-sensitive and that depletion of H3K4me3 levels increases stress resistance in mammalian cell cultures. In vitro studies identified SET1/MLL histone methyltransferases as redox sensitive units of the H3K4-trimethylating complex of proteins (COMPASS). Our findings implicate a link between early-life events, ROS-sensitive epigenetic marks, stress resistance and lifespan.
    • References:
      Finch, C. E. & Tanzi, R. E. Genetics of aging. Science 278, 407–411 (1997). (PMID: 10.1126/science.278.5337.407)
      Rea, S. L., Wu, D., Cypser, J. R., Vaupel, J. W. & Johnson, T. E. A stress-sensitive reporter predicts longevity in isogenic populations of Caenorhabditis elegans. Nat. Genet. 37, 894–898 (2005). (PMID: 10.1038/ng1608)
      Holmström, K. M. & Finkel, T. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat. Rev. Mol. Cell. Biol. 15, 411–421 (2014). (PMID: 10.1038/nrm3801)
      Schulz, T. J. et al. Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab. 6, 280–293 (2007). (PMID: 10.1016/j.cmet.2007.08.011)
      Dillin, A. et al. Rates of behavior and aging specified by mitochondrial function during development. Science 298, 2398–2401 (2002). (PMID: 10.1126/science.1077780)
      Ristow, M. & Schmeisser, S. Extending life span by increasing oxidative stress. Free Radic. Biol. Med. 51, 327–336 (2011). (PMID: 10.1016/j.freeradbiomed.2011.05.010)
      Knoefler, D. et al. Quantitative in vivo redox sensors uncover oxidative stress as an early event in life. Mol. Cell 47, 767–776 (2012). (PMID: 10.1016/j.molcel.2012.06.016)
      Gutscher, M. et al. Real-time imaging of the intracellular glutathione redox potential. Nat. Methods 5, 553–559 (2008). (PMID: 10.1038/nmeth.1212)
      Labbadia, J. & Morimoto, R. I. Repression of the heat shock response is a programmed event at the onset of reproduction. Mol. Cell 59, 639–650 (2015). (PMID: 10.1016/j.molcel.2015.06.027)
      Greer, E. L. et al. Members of the H3K4 trimethylation complex regulate lifespan in a germline-dependent manner in C. elegans. Nature 466, 383–387 (2010). (PMID: 10.1038/nature09195)
      Shilatifard, A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu. Rev. Biochem. 81, 65–95 (2012). (PMID: 10.1146/annurev-biochem-051710-134100)
      Guenther, M. G., Levine, S. S., Boyer, L. A., Jaenisch, R. & Young, R. A. A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130, 77–88 (2007). (PMID: 10.1016/j.cell.2007.05.042)
      Pu, M. et al. Unique patterns of trimethylation of histone H3 lysine 4 are prone to changes during aging in Caenorhabditis elegans somatic cells. PLoS Genet. 14, e1007466 (2018). (PMID: 10.1371/journal.pgen.1007466)
      Wang, W. et al. SET-9 and SET-26 are H3K4me3 readers and play critical roles in germline development and longevity. eLife 7, e34970 (2018). (PMID: 10.7554/eLife.34970)
      Dou, Y. et al. Regulation of MLL1 H3K4 methyltransferase activity by its core components. Nat. Struct. Mol. Biol. 13, 713–719 (2006). (PMID: 10.1038/nsmb1128)
      Southall, S. M., Wong, P. S., Odho, Z., Roe, S. M. & Wilson, J. R. Structural basis for the requirement of additional factors for MLL1 SET domain activity and recognition of epigenetic marks. Mol. Cell 33, 181–191 (2009). (PMID: 10.1016/j.molcel.2008.12.029)
      Shilatifard, A. Molecular implementation and physiological roles for histone H3 lysine 4 (H3K4) methylation. Curr. Opin. Cell Biol. 20, 341–348 (2008). (PMID: 10.1016/j.ceb.2008.03.019)
      Li, T. & Kelly, W. G. A role for Set1/MLL-related components in epigenetic regulation of the Caenorhabditis elegans germ line. PLoS Genet. 7, e1001349 (2011). (PMID: 10.1371/journal.pgen.1001349)
      Leichert, L. I. et al. Quantifying changes in the thiol redox proteome upon oxidative stress in vivo. Proc. Natl Acad. Sci. USA 105, 8197–8202 (2008). (PMID: 10.1073/pnas.0707723105)
      Kenyon, C. J. The genetics of ageing. Nature 464, 504–512 (2010). (PMID: 10.1038/nature08980)
      Yang, W. & Hekimi, S. A mitochondrial superoxide signal triggers increased longevity in Caenorhabditis elegans. PLoS Biol. 8, e1000556 (2010). (PMID: 10.1371/journal.pbio.1000556)
      Weiner, A. et al. Systematic dissection of roles for chromatin regulators in a yeast stress response. PLoS Biol. 10, e1001369 (2012). (PMID: 10.1371/journal.pbio.1001369)
      Hansen, M., Flatt, T. & Aguilaniu, H. Reproduction, fat metabolism, and life span: what is the connection? Cell Metab. 17, 10–19 (2013). (PMID: 10.1016/j.cmet.2012.12.003)
      Han, S. et al. Mono-unsaturated fatty acids link H3K4me3 modifiers to C. elegans lifespan. Nature 544, 185–190 (2017). (PMID: 10.1038/nature21686)
      Sun, L., Sadighi Akha, A. A., Miller, R. A. & Harper, J. M. Life-span extension in mice by preweaning food restriction and by methionine restriction in middle age. J. Gerontol. A 64A, 711–722 (2009). (PMID: 10.1093/gerona/glp051)
      Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974). (PMID: 43664761213120)
      Stroustrup, N. et al. The Caenorhabditis elegans Lifespan Machine. Nat. Methods 10, 665–670 (2013). (PMID: 10.1038/nmeth.2475)
      Koopman, M. et al. A screening-based platform for the assessment of cellular respiration in Caenorhabditis elegans. Nat. Protocols 11, 1798–1816 (2016). (PMID: 10.1038/nprot.2016.106)
      Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009). (PMID: 10.1186/gb-2009-10-3-r25)
      Trapnell, C., Pachter, L. & Salzberg, S. L. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105–1111 (2009). (PMID: 10.1093/bioinformatics/btp120)
      Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005). (PMID: 10.1073/pnas.0506580102)
      Ng, S. B. et al. Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat. Genet. 42, 790–793 (2010). (PMID: 10.1038/ng.646)
      Dorgan, K. M. et al. An enzyme-coupled continuous spectrophotometric assay for S-adenosylmethionine-dependent methyltransferases. Anal. Biochem. 350, 249–255 (2006). (PMID: 10.1016/j.ab.2006.01.004)
      Southall, S. M., Cronin, N. B. & Wilson, J. R. A novel route to product specificity in the Suv4-20 family of histone H4K20 methyltransferases. Nucleic Acids Res. 42, 661–671 (2014). (PMID: 10.1093/nar/gkt776)
    • Grant Information:
      R01 AG027349 United States AG NIA NIH HHS; AG046799 United States NH NIH HHS; R35 GM122506 United States GM NIGMS NIH HHS; R21 AG046799 United States AG NIA NIH HHS; GM122506 United States NH NIH HHS; P40 OD010440 United States OD NIH HHS
    • Accession Number:
      0 (Histones)
      0 (Reactive Oxygen Species)
      0 (histone H3 trimethyl Lys4)
    • Publication Date:
      Date Created: 20191206 Date Completed: 20200402 Latest Revision: 20220417
    • Publication Date:
      20240513
    • Accession Number:
      PMC7039399
    • Accession Number:
      10.1038/s41586-019-1814-y
    • Accession Number:
      31801997