De novo mutations disturb early brain development more frequently than common variants in schizophrenia.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Itai T;Itai T; Jia P; Jia P; Dai Y; Dai Y; Chen J; Chen J; Chen X; Chen X; Zhao Z; Zhao Z; Zhao Z; Zhao Z
  • Source:
    American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics [Am J Med Genet B Neuropsychiatr Genet] 2023 Apr; Vol. 192 (3-4), pp. 62-70. Date of Electronic Publication: 2023 Mar 02.
  • Publication Type:
    Journal Article; Research Support, N.I.H., Extramural
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: Wiley-Blackwell Country of Publication: United States NLM ID: 101235742 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1552-485X (Electronic) Linking ISSN: 15524841 NLM ISO Abbreviation: Am J Med Genet B Neuropsychiatr Genet Subsets: MEDLINE
    • Publication Information:
      Publication: Hoboken, N.J. : Wiley-Blackwell
      Original Publication: Hoboken, N.J. : Wiley-Liss, c2003-
    • Subject Terms:
    • Abstract:
      Investigating functional, temporal, and cell-type expression features of mutations is important for understanding a complex disease. Here, we collected and analyzed common variants and de novo mutations (DNMs) in schizophrenia (SCZ). We collected 2,636 missense and loss-of-function (LoF) DNMs in 2,263 genes across 3,477 SCZ patients (SCZ-DNMs). We curated three gene lists: (a) SCZ-neuroGenes (159 genes), which are intolerant to LoF and missense DNMs and are neurologically important, (b) SCZ-moduleGenes (52 genes), which were derived from network analyses of SCZ-DNMs, and (c) SCZ-commonGenes (120 genes) from a recent GWAS as reference. To compare temporal gene expression, we used the BrainSpan dataset. We defined a fetal effect score (FES) to quantify the involvement of each gene in prenatal brain development. We further employed the specificity indexes (SIs) to evaluate cell-type expression specificity from single-cell expression data in cerebral cortices of humans and mice. Compared with SCZ-commonGenes, SCZ-neuroGenes and SCZ-moduleGenes were highly expressed in the prenatal stage, had higher FESs, and had higher SIs in fetal replicating cells and undifferentiated cell types. Our results suggested that gene expression patterns in specific cell types in early fetal stages might have impacts on the risk of SCZ during adulthood.
      (© 2023 Wiley Periodicals LLC.)
    • References:
      Abrahams, B. S., Arking, D. E., Campbell, D. B., Mefford, H. C., Morrow, E. M., Weiss, L. A., … Packer, A. (2013). SFARI Gene 2.0: A community-driven knowledgebase for the autism spectrum disorders (ASDs). Molecular Autism, 4(1), 36. https://doi.org/10.1186/2040-2392-4-36.
      Allswede, D. M., & Cannon, T. D. (2018). Prenatal inflammation and risk for schizophrenia: A role for immune proteins in neurodevelopment. Development and Psychopathology, 30(3), 1157-1178. https://doi.org/10.1017/s0954579418000317.
      Ambalavanan, A., Girard, S. L., Ahn, K., Zhou, S., Dionne-Laporte, A., Spiegelman, D., … Rouleau, G. A. (2016). De novo variants in sporadic cases of childhood onset schizophrenia. European Journal of Human Genetics, 24(6), 944-948. https://doi.org/10.1038/ejhg.2015.218.
      Benner, C., Spencer, C. C. A., Havulinna, A. S., Salomaa, V., Ripatti, S., & Pirinen, M. (2016). FINEMAP: Efficient variable selection using summary data from genome-wide association studies. Bioinformatics, 32(10), 1493-1501. https://doi.org/10.1093/bioinformatics/btw018.
      Bereshchenko, O., Bruscoli, S., & Riccardi, C. (2018). Glucocorticoids, sex hormones, and immunity. Frontiers in Immunology, 9, 1332. https://doi.org/10.3389/fimmu.2018.01332.
      Catts, V. S., & Weickert, C. S. (2012). Gene expression analysis implicates a death receptor pathway in schizophrenia pathology. PLoS One, 7(4), e35511. https://doi.org/10.1371/journal.pone.0035511.
      Chen, J., Wu, J. S., Mize, T., Moreno, M., Hamid, M., Servin, F., … Chen, X. (2019). A frameshift variant in the CHST9 gene identified by family-based whole genome sequencing is associated with schizophrenia in Chinese population. Scientific Reports, 9(1), 12717. https://doi.org/10.1038/s41598-019-49052-w.
      Csaba, G. (2014). Hormones in the immune system and their possible role. A critical review. Acta Microbiologica et Immunologica Hungarica, 61(3), 241-260. https://doi.org/10.1556/amicr.61.2014.3.1.
      Dai, Y., Hu, R., Liu, A., Cho, K. S., Manuel, A. M., Li, X., … Zhao, Z. (2022). WebCSEA: Web-based cell-type-specific enrichment analysis of genes. Nucleic Acids Research, 50, W782-W790. https://doi.org/10.1093/nar/gkac392.
      Darmanis, S., Sloan, S. A., Zhang, Y., Enge, M., Caneda, C., Shuer, L. M., … Quake, S. R. (2015). A survey of human brain transcriptome diversity at the single cell level. Proceedings of the National Academy of Sciences of the United States of America, 112(23), 7285-7290. https://doi.org/10.1073/pnas.1507125112.
      Firth, H. V., Richards, S. M., Bevan, A. P., Clayton, S., Corpas, M., Rajan, D., … Carter, N. P. (2009). DECIPHER: Database of Chromosomal Imbalance and Phenotype in Humans using Ensembl Resources. American Journal of Human Genetics, 84(4), 524-533. https://doi.org/10.1016/j.ajhg.2009.03.010.
      Flippo, K. H., & Strack, S. (2017). An emerging role for mitochondrial dynamics in schizophrenia. Schizophrenia Research, 187, 26-32. https://doi.org/10.1016/j.schres.2017.05.003.
      Fond, G., Lancon, C., Korchia, T., Auquier, P., & Boyer, L. (2020). The role of inflammation in the treatment of schizophrenia. Frontiers in Psychiatry, 11, 160. https://doi.org/10.3389/fpsyt.2020.00160.
      Franz, M., Rodriguez, H., Lopes, C., Zuberi, K., Montojo, J., Bader, G. D., & Morris, Q. (2018). GeneMANIA update 2018. Nucleic Acids Research, 46(W1), W60-W64. https://doi.org/10.1093/nar/gky311.
      Fromer, M., Pocklington, A. J., Kavanagh, D. H., Williams, H. J., Dwyer, S., Gormley, P., … O'Donovan, M. C. (2014). De novo mutations in schizophrenia implicate synaptic networks. Nature, 506(7487), 179-184. https://doi.org/10.1038/nature12929.
      Gauthier, J., Champagne, N., Lafrenière, R. G., Xiong, L., Spiegelman, D., Brustein, E., … Rouleau, G. A. (2010). De novo mutations in the gene encoding the synaptic scaffolding protein SHANK3 in patients ascertained for schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 107(17), 7863-7868. https://doi.org/10.1073/pnas.0906232107.
      Girard, S. L., Gauthier, J., Noreau, A., Xiong, L., Zhou, S., Jouan, L., … Rouleau, G. A. (2011). Increased exonic de novo mutation rate in individuals with schizophrenia. Nature Genetics, 43(9), 860-863. https://doi.org/10.1038/ng.886.
      Grayson, D. R., & Guidotti, A. (2013). The dynamics of DNA methylation in schizophrenia and related psychiatric disorders. Neuropsychopharmacology, 38(1), 138-166. https://doi.org/10.1038/npp.2012.125.
      Guipponi, M., Santoni, F. A., Setola, V., Gehrig, C., Rotharmel, M., Cuenca, M., … Antonarakis, S. E. (2014). Exome sequencing in 53 sporadic cases of schizophrenia identifies 18 putative candidate genes. PLoS One, 9(11), e112745. https://doi.org/10.1371/journal.pone.0112745.
      Gulsuner, S., Walsh, T., Watts, A. C., Lee, M. K., Thornton, A. M., Casadei, S., … McClellan, J. M. (2013). Spatial and temporal mapping of de novo mutations in schizophrenia to a fetal prefrontal cortical network. Cell, 154(3), 518-529. https://doi.org/10.1016/j.cell.2013.06.049.
      Gurumayum, S., Jiang, P., Hao, X., Campos, T. L., Young, N. D., Korhonen, P. K., … Chen, W. H. (2021). OGEE v3: Online GEne essentiality database with increased coverage of organisms and human cell lines. Nucleic Acids Research, 49(D1), D998-D1003. https://doi.org/10.1093/nar/gkaa884.
      Hormozdiari, F., Penn, O., Borenstein, E., & Eichler, E. E. (2015). The discovery of integrated gene networks for autism and related disorders. Genome Research, 25(1), 142-154. https://doi.org/10.1101/gr.178855.114.
      Howrigan, D. P., Rose, S. A., Samocha, K. E., Fromer, M., Cerrato, F., Chen, W. J., … Neale, B. M. (2020). Exome sequencing in schizophrenia-affected parent-offspring trios reveals risk conferred by protein-coding de novo mutations. Nature Neuroscience, 23(2), 185-193. https://doi.org/10.1038/s41593-019-0564-3.
      Jia, P., Chen, X., Fanous, A. H., & Zhao, Z. (2018). Convergent roles of de novo mutations and common variants in schizophrenia in tissue-specific and spatiotemporal co-expression network. Translational Psychiatry, 8(1), 105. https://doi.org/10.1038/s41398-018-0154-2.
      Jia, P., Han, G., Zhao, J., Lu, P., & Zhao, Z. (2017). SZGR 2.0: A one-stop shop of schizophrenia candidate genes. Nucleic Acids Research, 45(D1), D915-D924. https://doi.org/10.1093/nar/gkw902.
      Jia, P., Manuel, A. M., Fernandes, B. S., Dai, Y., & Zhao, Z. (2021). Distinct effect of prenatal and postnatal brain expression across 20 brain disorders and anthropometric social traits: A systematic study of spatiotemporal modularity. Briefings in Bioinformatics, 22, bbab214. https://doi.org/10.1093/bib/bbab214.
      Karczewski, K. J., Francioli, L. C., Tiao, G., Cummings, B. B., Alfoldi, J., Wang, Q., … MacArthur, D. G. (2020). The mutational constraint spectrum quantified from variation in 141,456 humans. Nature, 581(7809), 434-443. https://doi.org/10.1038/s41586-020-2308-7.
      Koopmans, F., van Nierop, P., Andres-Alonso, M., Byrnes, A., Cijsouw, T., Coba, M. P., … Verhage, M. (2019). SynGO: An evidence-based, expert-curated knowledge base for the synapse. Neuron, 103(2), 217-234.e4. https://doi.org/10.1016/j.neuron.2019.05.002.
      Kucera, M., Isserlin, R., Arkhangorodsky, A., & Bader, G. D. (2016). AutoAnnotate: A Cytoscape app for summarizing networks with semantic annotations. F1000Research, 5, 1717. https://doi.org/10.12688/f1000research.9090.1.
      Lake, B. B., Chen, S., Sos, B. C., Fan, J., Kaeser, G. E., Yung, Y. C., … Zhang, K. (2018). Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain. Nature Biotechnology, 36(1), 70-80. https://doi.org/10.1038/nbt.4038.
      Liao, Y., Wang, J., Jaehnig, E. J., Shi, Z., & Zhang, B. (2019). WebGestalt 2019: Gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Research, 47(W1), W199-W205. https://doi.org/10.1093/nar/gkz401.
      MacDonald, M. L., Garver, M., Newman, J., Sun, Z., Kannarkat, J., Salisbury, R., … Sweet, R. A. (2020). Synaptic proteome alterations in the primary auditory cortex of individuals with schizophrenia. JAMA Psychiatry, 77(1), 86-95. https://doi.org/10.1001/jamapsychiatry.2019.2974.
      Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff, L. A., Hunter, D. J., … Visscher, P. M. (2009). Finding the missing heritability of complex diseases. Nature, 461(7265), 747-753. https://doi.org/10.1038/nature08494.
      Marder, S. R., & Cannon, T. D. (2019). Schizophrenia. New England Journal of Medicine, 381(18), 1753-1761. https://doi.org/10.1056/NEJMra1808803.
      McCarthy, S. E., Gillis, J., Kramer, M., Lihm, J., Yoon, S., Berstein, Y., … Corvin, A. (2014). De novo mutations in schizophrenia implicate chromatin remodeling and support a genetic overlap with autism and intellectual disability. Molecular Psychiatry, 19(6), 652-658. https://doi.org/10.1038/mp.2014.29.
      Merico, D., Isserlin, R., Stueker, O., Emili, A., & Bader, G. D. (2010). Enrichment map: A network-based method for gene-set enrichment visualization and interpretation. PLoS ONE, 5(11), e13984. https://doi.org/10.1371/journal.pone.0013984.
      Miller, J. A., Ding, S.-L., Sunkin, S. M., Smith, K. A., Ng, L., Szafer, A., … Lein, E. S. (2014). Transcriptional landscape of the prenatal human brain. Nature, 508(7495), 199-206. https://doi.org/10.1038/nature13185.
      Moghaddam, B., & Javitt, D. (2012). From revolution to evolution: The glutamate hypothesis of schizophrenia and its implication for treatment. Neuropsychopharmacology, 37(1), 4-15. https://doi.org/10.1038/npp.2011.181.
      Mukai, J., Cannavo, E., Crabtree, G. W., Sun, Z., Diamantopoulou, A., Thakur, P., … Gogos, J. A. (2019). Recapitulation and reversal of schizophrenia-related phenotypes in Setd1a-deficient mice. Neuron, 104(3), 471-487.e12. https://doi.org/10.1016/j.neuron.2019.09.014.
      Muller, N., Weidinger, E., Leitner, B., & Schwarz, M. J. (2015). The role of inflammation in schizophrenia. Frontiers in Neuroscience, 9, 372. https://doi.org/10.3389/fnins.2015.00372.
      Raudvere, U., Kolberg, L., Kuzmin, I., Arak, T., Adler, P., Peterson, H., & Vilo, J. (2019). g:Profiler: A web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Research, 47(W1), W191-W198. https://doi.org/10.1093/nar/gkz369.
      Rees, E., Creeth, H. D. J., Hwu, H. G., Chen, W. J., Tsuang, M., Glatt, S. J., … O'Donovan, M. C. (2021). Schizophrenia, autism spectrum disorders and developmental disorders share specific disruptive coding mutations. Nature Communications, 12(1), 5353. https://doi.org/10.1038/s41467-021-25532-4.
      Rees, E., Han, J., Morgan, J., Carrera, N., Escott-Price, V., Pocklington, A. J., … Owen, M. J. (2020). De novo mutations identified by exome sequencing implicate rare missense variants in SLC6A1 in schizophrenia. Nature Neuroscience, 23(2), 179-184. https://doi.org/10.1038/s41593-019-0565-2.
      Singh, T., Poterba, T., Curtis, D., Akil, H., Al Eissa, M., Barchas, J. D., … Daly, M. J. (2022). Rare coding variants in ten genes confer substantial risk for schizophrenia. Nature, 604, 509-516. https://doi.org/10.1038/s41586-022-04556-w.
      Skene, N. G., Bryois, J., Bakken, T. E., Breen, G., Crowley, J. J., Gaspar, H. A., … Hjerling-Leffler, J. (2018). Genetic identification of brain cell types underlying schizophrenia. Nature Genetics, 50(6), 825-833. https://doi.org/10.1038/s41588-018-0129-5.
      Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck, W. M., 3rd, … Satija, R. (2019). Comprehensive integration of single-cell data. Cell, 177(7), 1888-1902.e21. https://doi.org/10.1016/j.cell.2019.05.031.
      Sullivan, P. F., Kendler, K. S., & Neale, M. C. (2003). Schizophrenia as a complex trait: Evidence from a meta-analysis of twin studies. Archives of General Psychiatry, 60(12), 1187-1192. https://doi.org/10.1001/archpsyc.60.12.1187.
      Takata, A., Xu, B., Ionita-Laza, I., Roos, J. L., Gogos, J. A., & Karayiorgou, M. (2014). Loss-of-function variants in schizophrenia risk and SETD1A as a candidate susceptibility gene. Neuron, 82(4), 773-780. https://doi.org/10.1016/j.neuron.2014.04.043.
      Todarello, G., Feng, N., Kolachana, B. S., Li, C., Vakkalanka, R., Bertolino, A., … Straub, R. E. (2014). Incomplete penetrance of NRXN1 deletions in families with schizophrenia. Schizophrenia Research, 155(1-3), 1-7. https://doi.org/10.1016/j.schres.2014.02.023.
      Trubetskoy, V., Pardinas, A. F., Qi, T., Panagiotaropoulou, G., Awasthi, S., Bigdeli, T. B., … Schizophrenia Working Group of the Psychiatric Genomics Consortium. (2022). Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature, 604, 502-508. https://doi.org/10.1038/s41586-022-04434-5.
      Wang, Q., Li, M., Yang, Z., Hu, X., Wu, H. M., Ni, P., … Li, T. (2015). Increased co-expression of genes harboring the damaging de novo mutations in Chinese schizophrenic patients during prenatal development. Scientific Reports, 5, 18209. https://doi.org/10.1038/srep18209.
      Wisniewska, M. B. (2013). Physiological role of β-catenin/TCF signaling in neurons of the adult brain. Neurochemical Research, 38(6), 1144-1155. https://doi.org/10.1007/s11064-013-0980-9.
      Xu, B., Ionita-Laza, I., Roos, J. L., Boone, B., Woodrick, S., Sun, Y., … Karayiorgou, M. (2012). De novo gene mutations highlight patterns of genetic and neural complexity in schizophrenia. Nature Genetics, 44(12), 1365-1369. https://doi.org/10.1038/ng.2446.
      Zhang, C. Y., Xiao, X., Zhang, Z., Hu, Z., & Li, M. (2022). An alternative splicing hypothesis for neuropathology of schizophrenia: Evidence from studies on historical candidate genes and multi-omics data. Molecular Psychiatry, 27(1), 95-112. https://doi.org/10.1038/s41380-021-01037-w.
      Zhang, Z., Ye, M., Li, Q., You, Y., Yu, H., Ma, Y., … Zhang, D. (2019). The schizophrenia susceptibility gene OPCML regulates spine maturation and cognitive behaviors through Eph-cofilin signaling. Cell Reports, 29(1), 49-61.e7. https://doi.org/10.1016/j.celrep.2019.08.091.
      Zhu, Z., Zhang, F., Hu, H., Bakshi, A., Robinson, M. R., Powell, J. E., … Yang, J. (2016). Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nature Genetics, 48(5), 481-487. https://doi.org/10.1038/ng.3538.
    • Grant Information:
      P20 GM121325 United States GM NIGMS NIH HHS; U54 GM104944 United States GM NIGMS NIH HHS; R01MH101054 United States NH NIH HHS; R01LM012806 United States NH NIH HHS
    • Contributed Indexing:
      Keywords: cell-type-specific enrichment analysis; common variant; de novo mutation; prenatal and postnatal comparison; schizophrenia; single-cell RNA-sequencing
    • Publication Date:
      Date Created: 20230302 Date Completed: 20230318 Latest Revision: 20240525
    • Publication Date:
      20240525
    • Accession Number:
      10.1002/ajmg.b.32932
    • Accession Number:
      36863698