Isolation and Differentiation of Neurons and Glial Cells from Olfactory Epithelium in Living Subjects.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Humana Press Country of Publication: United States NLM ID: 8900963 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1559-1182 (Electronic) Linking ISSN: 08937648 NLM ISO Abbreviation: Mol Neurobiol Subsets: MEDLINE
    • Publication Information:
      Original Publication: Clifton, NJ : Humana Press, c1987-
    • Subject Terms:
    • Abstract:
      The study of psychiatric and neurological diseases requires the substrate in which the disorders occur, that is, the nervous tissue. Currently, several types of human bio-specimens are being used for research, including postmortem brains, cerebrospinal fluid, induced pluripotent stem (iPS) cells, and induced neuronal (iN) cells. However, these samples are far from providing a useful predictive, diagnostic, or prognostic biomarker. The olfactory epithelium is a region close to the brain that has received increased interest as a research tool for the study of brain mechanisms in complex neuropsychiatric and neurological diseases. The olfactory sensory neurons are replaced by neurogenesis throughout adult life from stem cells on the basement membrane. These stem cells are multipotent and can be propagated in neurospheres, proliferated in vitro and differentiated into multiple cell types including neurons and glia. For all these reasons, olfactory epithelium provides a unique resource for investigating neuronal molecular markers of neuropsychiatric and neurological diseases. Here, we describe the isolation and culture of human differentiated neurons and glial cells from olfactory epithelium of living subjects by an easy and non-invasive exfoliation method that may serve as a useful tool for the research in brain diseases.
      (© 2023. The Author(s).)
    • References:
      Nestler EJ, Hyman SE (2010) Animal models of neuropsychiatric disorders. Nat Neurosci 13(10):1161–1169. https://doi.org/10.1038/nn.2647. (PMID: 10.1038/nn.2647208772803750731)
      McCullumsmith RE, Hammond JH, Shan D, Meador-Woodruff JH (2014) Postmortem brain: an underutilized substrate for studying severe mental illness. Neuropsychopharmacology 39(1):65–87. https://doi.org/10.1038/npp.2013.239. (PMID: 10.1038/npp.2013.23924091486)
      Alciati A, Reggiani A, Caldirola D, Perna G (2022) Human-induced pluripotent stem cell technology: toward the future of personalized psychiatry. J Personalized Med 12 (8). https://doi.org/10.3390/jpm12081340.
      Unterholzner J, Millischer V, Wotawa C, Sawa A, Lanzenberger R (2021) Making sense of patient-derived iPSCs, transdifferentiated neurons, olfactory neuronal cells, and cerebral organoids as models for psychiatric disorders. Int J Neuropsychopharmacol 24(10):759–775. https://doi.org/10.1093/ijnp/pyab037. (PMID: 10.1093/ijnp/pyab037342164658538891)
      Durante MA, Kurtenbach S, Sargi ZB, Harbour JW, Choi R, Kurtenbach S, Goss GM, Matsunami H et al (2020) Single-cell analysis of olfactory neurogenesis and differentiation in adult humans. Nat Neurosci 23(3):323–326. https://doi.org/10.1038/s41593-020-0587-9. (PMID: 10.1038/s41593-020-0587-9320669867065961)
      Matigian N, Abrahamsen G, Sutharsan R, Cook AL, Vitale AM, Nouwens A, Bellette B, An J et al (2010) Disease-specific, neurosphere-derived cells as models for brain disorders. Dis Model Mech 3(11–12):785–798. https://doi.org/10.1242/dmm.005447. (PMID: 10.1242/dmm.00544720699480)
      Jimenez-Vaca AL, Benitez-King G, Ruiz V, Ramirez-Rodriguez GB, Hernandez-de la Cruz B, Salamanca-Gomez FA, Gonzalez-Marquez H, Ramirez-Sanchez I et al (2018) Exfoliated human olfactory neuroepithelium: a source of neural progenitor cells. Mol Neurobiol 55(3):2516–2523. https://doi.org/10.1007/s12035-017-0500-z. (PMID: 10.1007/s12035-017-0500-z28391555)
      Idotta C, Tibaldi E, Brunati AM, Pagano MA, Cadamuro M, Miola A, Martini A, Favaretto N et al (2019) Olfactory neuroepithelium alterations and cognitive correlates in schizophrenia. Eur Psychiatry 61:23–32. https://doi.org/10.1016/j.eurpsy.2019.06.004. (PMID: 10.1016/j.eurpsy.2019.06.00431260908)
      Borgmann-Winter K, Willard SL, Sinclair D, Mirza N, Turetsky B, Berretta S, Hahn CG (2015) Translational potential of olfactory mucosa for the study of neuropsychiatric illness. Transl Psychiatry 5(3):527. https://doi.org/10.1038/tp.2014.141. (PMID: 10.1038/tp.2014.141)
      Lavoie J, Sawa A, Ishizuka K (2017) Application of olfactory tissue and its neural progenitors to schizophrenia and psychiatric research. Curr Opin Psychiatry 30(3):176–183. https://doi.org/10.1097/yco.0000000000000327. (PMID: 10.1097/yco.0000000000000327283336925471112)
      Delgado-Sequera A, Hidalgo-Figueroa M, Barrera-Conde M, Duran-Ruiz MC, Castro C, Fernández-Avilés C, de la Torre R, Sánchez-Gomar I et al (2021) Olfactory neuroepithelium cells from Cannabis users display alterations to the cytoskeleton and to markers of adhesion, proliferation and apoptosis. Mol Neurobiol 58(4):1695–1710. https://doi.org/10.1007/s12035-020-02205-9. (PMID: 10.1007/s12035-020-02205-933237429)
      McLean CK, Narayan S, Lin SY, Rai N, Chung Y, Hipolito MS, Cascella NG, Nurnberger JI Jr et al (2018) Lithium-associated transcriptional regulation of CRMP1 in patient-derived olfactory neurons and symptom changes in bipolar disorder. Transl Psychiatry 8(1):81. https://doi.org/10.1038/s41398-018-0126-6. (PMID: 10.1038/s41398-018-0126-6296663695904136)
      Guinart D, Moreno E, Galindo L, Cuenca-Royo A, Barrera-Conde M, Pérez EJ, Fernández-Avilés C, Correll CU et al (2020) Altered signaling in CB1R-5-HT2AR heteromers in olfactory neuroepithelium cells of schizophrenia patients is modulated by Cannabis use. Schizophr Bull 46(6):1547–1557. https://doi.org/10.1093/schbul/sbaa038. (PMID: 10.1093/schbul/sbaa038322493187846100)
      Féron F, Perry C, Girard SD, Mackay-Sim A (2013) Isolation of adult stem cells from the human olfactory mucosa. Methods Mol Biol 1059:107–114. https://doi.org/10.1007/978-1-62703-574-3_10. (PMID: 10.1007/978-1-62703-574-3_1023934838)
      English JA, Fan Y, Focking M, Lopez LM, Hryniewiecka M, Wynne K, Dicker P, Matigian N et al (2015) Reduced protein synthesis in schizophrenia patient-derived olfactory cells. Transl Psychiatry 5:663. https://doi.org/10.1038/tp.2015.119. (PMID: 10.1038/tp.2015.119)
      Benitez-King G, Riquelme A, Ortiz-Lopez L, Berlanga C, Rodriguez-Verdugo MS, Romo F, Calixto E, Solis-Chagoyan H et al (2011) A non-invasive method to isolate the neuronal linage from the nasal epithelium from schizophrenic and bipolar diseases. J Neurosci Methods 201(1):35–45. https://doi.org/10.1016/j.jneumeth.2011.07.009. (PMID: 10.1016/j.jneumeth.2011.07.00921787803)
      Rougon G, Marshak DR (1986) Structural and immunological characterization of the amino-terminal domain of mammalian neural cell adhesion molecules. J Biol Chem 261(7):3396–3401. (PMID: 10.1016/S0021-9258(17)35796-43512556)
      Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999. (PMID: 10.1006/abio.1976.9999942051)
      Brann JH, Ellis DP, Ku BS, Spinazzi EF, Firestein S (2015) Injury in aged animals robustly activates quiescent olfactory neural stem cells. Front Neurosci 9:367. https://doi.org/10.3389/fnins.2015.00367. (PMID: 10.3389/fnins.2015.00367265004874596941)
      Mackay-Sim A, Kittel PW (1991) On the life span of olfactory receptor neurons. Eur J Neurosci 3(3):209–215. https://doi.org/10.1111/j.1460-9568.1991.tb00081.x. (PMID: 10.1111/j.1460-9568.1991.tb00081.x12106197)
      Katz J, Keenan B, Snyder EY (2010) Culture and manipulation of neural stem cells. Adv Exp Med Biol 671:13–22. https://doi.org/10.1007/978-1-4419-5819-8_2. (PMID: 10.1007/978-1-4419-5819-8_220455492)
      Othman M, Lu C, Klueber K, Winstead W, Roisen F (2005) Clonal analysis of adult human olfactory neurosphere forming cells. Biotech Histochem 80(5–6):189–200. https://doi.org/10.1080/10520290500469777. (PMID: 10.1080/1052029050046977716720519)
      Gage FH, Ray J, Fisher LJ (1995) Isolation, characterization, and use of stem cells from the CNS. Annu Rev Neurosci 18:159–192. https://doi.org/10.1146/annurev.ne.18.030195.001111. (PMID: 10.1146/annurev.ne.18.030195.0011117605059)
      Galli R, Gritti A, Bonfanti L, Vescovi AL (2003) Neural stem cells: an overview. Circ Res 92(6):598–608. https://doi.org/10.1161/01.RES.0000065580.02404.F4. (PMID: 10.1161/01.RES.0000065580.02404.F412676811)
      Rao MS (1999) Multipotent and restricted precursors in the central nervous system. Anat Rec 257(4):137–148. https://doi.org/10.1002/(SICI)1097-0185(19990815)257:4%3c137::AID-AR7%3e3.0.CO;2-Q. (PMID: 10.1002/(SICI)1097-0185(19990815)257:4<137::AID-AR7>3.0.CO;2-Q10467245)
      Begum AN, Guoynes C, Cho J, Hao J, Lutfy K, Hong Y (2015) Rapid generation of sub-type, region-specific neurons and neural networks from human pluripotent stem cell-derived neurospheres. Stem Cell Res 15(3):731–741. https://doi.org/10.1016/j.scr.2015.10.014. (PMID: 10.1016/j.scr.2015.10.014266133484698048)
      Gil-Perotin S, Duran-Moreno M, Cebrian-Silla A, Ramirez M, Garcia-Belda P, Garcia-Verdugo JM (2013) Adult neural stem cells from the subventricular zone: a review of the neurosphere assay. Anat Rec (Hoboken) 296(9):1435–1452. https://doi.org/10.1002/ar.22746. (PMID: 10.1002/ar.2274623904071)
      Okano H, Kawahara H, Toriya M, Nakao K, Shibata S, Imai T (2005) Function of RNA-binding protein Musashi-1 in stem cells. Exp Cell Res 306(2):349–356. https://doi.org/10.1016/j.yexcr.2005.02.021. (PMID: 10.1016/j.yexcr.2005.02.02115925591)
      da Silva SL, Majolo F, da Silva APB, da Costa JC, Marinowic DR (2021) Neurospheres: a potential in vitro model for the study of central nervous system disorders. Mol Biol Rep 48(4):3649–3663. https://doi.org/10.1007/s11033-021-06301-4. (PMID: 10.1007/s11033-021-06301-433765252)
      Murrell W, Feron F, Wetzig A, Cameron N, Splatt K, Bellette B, Bianco J, Perry C, Lee G, Mackay-Sim A (2005) Multipotent stem cells from adult olfactory mucosa. Dev Dyn 233(2):496–515. https://doi.org/10.1002/dvdy.20360. (PMID: 10.1002/dvdy.2036015782416)
      Krolewski RC, Jang W, Schwob JE (2011) The generation of olfactory epithelial neurospheres in vitro predicts engraftment capacity following transplantation in vivo. Exp Neurol 229(2):308–323. https://doi.org/10.1016/j.expneurol.2011.02.014. (PMID: 10.1016/j.expneurol.2011.02.014213760383100381)
      Zelenova EA, Kondratyev NV, Lezheiko TV, Tsarapkin GY, Kryukov AI, Kishinevsky AE, Tovmasyan AS, Momotyuk ED, Dashinimaev EB, Golimbet VE (2021) Characterisation of neurospheres-derived cells from human olfactory epithelium. Cells 10 (7). https://doi.org/10.3390/cells10071690.
      McCurdy RD, Feron F, Perry C, Chant DC, McLean D, Matigian N, Hayward NK, McGrath JJ et al (2006) Cell cycle alterations in biopsied olfactory neuroepithelium in schizophrenia and bipolar I disorder using cell culture and gene expression analyses. Schizophr Res 82(2–3):163–173. https://doi.org/10.1016/j.schres.2005.10.012. (PMID: 10.1016/j.schres.2005.10.01216406496)
      Borgmann-Winter K, Willard SL, Sinclair D, Mirza N, Turetsky B, Berretta S, Hahn CG (2015) Translational potential of olfactory mucosa for the study of neuropsychiatric illness. Transl Psychiatry 5:527. https://doi.org/10.1038/tp.2014.141. (PMID: 10.1038/tp.2014.141)
      Kiss JZ, Muller D (2001) Contribution of the neural cell adhesion molecule to neuronal and synaptic plasticity. Rev Neurosci 12(4):297–310. https://doi.org/10.1515/revneuro.2001.12.4.297. (PMID: 10.1515/revneuro.2001.12.4.29711783716)
      Seki T (2002) Expression patterns of immature neuronal markers PSA-NCAM, CRMP-4 and NeuroD in the hippocampus of young adult and aged rodents. J Neurosci Res 70(3):327–334. https://doi.org/10.1002/jnr.10387. (PMID: 10.1002/jnr.1038712391592)
      Bonfanti L, Nacher J (2012) New scenarios for neuronal structural plasticity in non-neurogenic brain parenchyma: the case of cortical layer II immature neurons. Prog Neurobiol 98(1):1–15. https://doi.org/10.1016/j.pneurobio.2012.05.002. (PMID: 10.1016/j.pneurobio.2012.05.00222609484)
      Bodaleo FJ, Montenegro-Venegas C, Henríquez DR, Court FA, Gonzalez-Billault C (2016) Microtubule-associated protein 1B (MAP1B)-deficient neurons show structural presynaptic deficiencies in vitro and altered presynaptic physiology. Sci Rep 6(1):30069. https://doi.org/10.1038/srep30069. (PMID: 10.1038/srep30069274256404948024)
      Lendahl U, Zimmerman LB, McKay RDG (1990) CNS stem cells express a new class of intermediate filament protein. Cell 60(4):585–595. https://doi.org/10.1016/0092-8674(90)90662-X. (PMID: 10.1016/0092-8674(90)90662-X1689217)
      Sullivan KF, Cleveland DW (1986) Identification of conserved isotype-defining variable region sequences for four vertebrate beta tubulin polypeptide classes. Proc Natl Acad Sci U S A 83(12):4327–4331. https://doi.org/10.1073/pnas.83.12.4327. (PMID: 10.1073/pnas.83.12.43273459176323725)
      Dráberová E, Lukás Z, Ivanyi D, Viklický V, Dráber P (1998) Expression of class III beta-tubulin in normal and neoplastic human tissues. Histochem Cell Biol 109(3):231–239. https://doi.org/10.1007/s004180050222. (PMID: 10.1007/s0041800502229541471)
      Duan W, Zhang YP, Hou Z, Huang C, Zhu H, Zhang CQ, Yin Q (2016) Novel insights into NeuN: from neuronal marker to splicing regulator. Mol Neurobiol 53(3):1637–1647. https://doi.org/10.1007/s12035-015-9122-5. (PMID: 10.1007/s12035-015-9122-525680637)
      Delgado D, Bilbao AM, Beitia M, Garate A, Sánchez P, González-Burguera I, Isasti A, López De Jesús M, Zuazo-Ibarra J, Montilla A, Domercq M, Capetillo-Zarate E, García Del Caño G, Sallés J, Matute C, Sánchez M (2021) Effects of platelet-rich plasma on cellular populations of the central nervous system: the influence of donor age. Int J Mol Sci 22 (4). https://doi.org/10.3390/ijms22041725.
      Mendivil-Perez M, Velez-Pardo C, Jimenez-Del-Rio M (2019) Direct transdifferentiation of human Wharton’s jelly mesenchymal stromal cells into cholinergic-like neurons. J Neurosci Methods 312:126–138. https://doi.org/10.1016/j.jneumeth.2018.11.019. (PMID: 10.1016/j.jneumeth.2018.11.01930472070)
      Sultan N, Amin LE, Zaher AR, Grawish ME, Scheven BA (2020) Neurotrophic effects of dental pulp stem cells on trigeminal neuronal cells. Sci Rep 10(1):19694. https://doi.org/10.1038/s41598-020-76684-0. (PMID: 10.1038/s41598-020-76684-0331843957665001)
      DeGiosio RA, Grubisha MJ, MacDonald ML, McKinney BC, Camacho CJ, Sweet RA (2022) More than a marker: potential pathogenic functions of MAP2. Frontiers in molecular neuroscience 15:974890. https://doi.org/10.3389/fnmol.2022.974890. (PMID: 10.3389/fnmol.2022.974890361873539525131)
      Leza JC, Garcia-Bueno B, Bioque M, Arango C, Parellada M, Do K, O’Donnell P, Bernardo M (2015) Inflammation in schizophrenia: a question of balance. Neurosci Biobehav Rev 55:612–626. https://doi.org/10.1016/j.neubiorev.2015.05.014. (PMID: 10.1016/j.neubiorev.2015.05.01426092265)
    • Grant Information:
      PID2019-106404RB-I00 Ministerio de Ciencia e Innovación; PNSD 2019I021 Plan Nacional sobre Drogas; 2019111082 Eusko Jaurlaritza; IT1211/19 Eusko Jaurlaritza; IT1512/22 Eusko Jaurlaritza
    • Contributed Indexing:
      Keywords: Glia; Neurons; Neuropsychiatric diseases; Neurospheres; Olfactory epithelium; PSA-NCAM
    • Accession Number:
      0 (Biomarkers)
      0 (Culture Media)
    • Publication Date:
      Date Created: 20230428 Date Completed: 20240214 Latest Revision: 20240406
    • Publication Date:
      20240406
    • Accession Number:
      PMC10293402
    • Accession Number:
      10.1007/s12035-023-03363-2
    • Accession Number:
      37118325