Investigating the Effects of the POPC-POPG Lipid Bilayer Composition on PAP248-286 Binding Using CG Molecular Dynamics Simulations.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Agrawal N;Agrawal N;Agrawal N; Parisini E; Parisini E; Parisini E
  • Source:
    The journal of physical chemistry. B [J Phys Chem B] 2023 Oct 26; Vol. 127 (42), pp. 9095-9101. Date of Electronic Publication: 2023 Oct 16.
  • Publication Type:
    Journal Article; Research Support, Non-U.S. Gov't
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: American Chemical Society Country of Publication: United States NLM ID: 101157530 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1520-5207 (Electronic) Linking ISSN: 15205207 NLM ISO Abbreviation: J Phys Chem B Subsets: MEDLINE
    • Publication Information:
      Original Publication: Washington, D.C. : American Chemical Society, c1997-
    • Subject Terms:
    • Abstract:
      PAP248-286 is a fusogenic peptide derived from prostatic acid phosphatase, commonly found in human semen, and is known to mediate HIV fusion with cell membranes. In this study, we performed 120 independent coarse-grained molecular dynamics simulations to investigate the spontaneous binding of PAP248-286 monomers, considering both charged and neutral histidine (His) residues, to membrane bilayers composed of different lipid compositions: 100% POPC, 70% POPC-30% POPG, and 50% POPC-50% POPG. Our simulations revealed that PAP248-286 displayed spontaneous binding to the membrane, with increased binding observed in the presence of anionic lipid POPG. Specifically, in systems containing 30% and 50% POPG lipids, monomer residues, particularly in the systems containing charged histidine (His) residues, exhibited prolonged binding with the membrane. Furthermore, our simulations indicated that PAP248-286 adopted a parallel orientation with the membrane, exposing its positively charged residues to the lipid bilayer. Interestingly, systems containing charged His residues showed a higher lipid occupancy around the peptide. These findings are consistent with previous experimental data, suggesting that PAP248-286 binding is enhanced in membranes with charged His residues, resembling the conditions found in the acidic vaginal pH environment. The results of our study provide further insights into the molecular mechanisms underlying the membrane binding of PAP248-286, contributing to our understanding of its potential role in HIV fusion and infection.
    • References:
      Biochemistry. 2018 Dec 4;57(48):6669-6678. (PMID: 30284812)
      Langmuir. 2019 Sep 10;35(36):11940-11949. (PMID: 31328526)
      Biology (Basel). 2012 May 29;1(1):58-80. (PMID: 24832047)
      Retrovirology. 2010 Jun 23;7:55. (PMID: 20573198)
      J Comput Chem. 2008 Aug;29(11):1859-65. (PMID: 18351591)
      Structure. 2006 Oct;14(10):1481-7. (PMID: 17027497)
      Viruses. 2015 Apr 20;7(4):2057-73. (PMID: 25903833)
      Microbes Infect. 2011 Nov;13(12-13):977-82. (PMID: 21767659)
      J Chem Theory Comput. 2015 Sep 8;11(9):4486-94. (PMID: 26575938)
      Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W368-71. (PMID: 15980491)
      Biophys J. 2020 Sep 1;119(5):924-938. (PMID: 32814060)
      Adv Colloid Interface Sci. 2014 May;207:81-92. (PMID: 24200086)
      Cell. 2007 Dec 14;131(6):1059-71. (PMID: 18083097)
      Comput Struct Biotechnol J. 2022 Sep 03;20:4892-4901. (PMID: 36147683)
      Comput Struct Biotechnol J. 2023 Apr 15;21:2688-2695. (PMID: 37143763)
      Front Immunol. 2022 Nov 09;13:1040172. (PMID: 36439102)
      Biochimie. 2012 Aug;94(8):1730-8. (PMID: 22542639)
      Bioinformatics. 2017 Jan 1;33(1):133-134. (PMID: 27578804)
      Antimicrob Agents Chemother. 2013 Jun;57(6):2443-50. (PMID: 23507280)
      ACS Chem Neurosci. 2012 Jun 20;3(6):473-81. (PMID: 22860216)
      Protein J. 2019 Aug;38(4):425-434. (PMID: 31325011)
      AIDS Res Hum Retroviruses. 2022 Oct;38(10):822-830. (PMID: 35972723)
      J Membr Biol. 2016 Jun;249(3):411-7. (PMID: 26884389)
      Biochem Biophys Res Commun. 2021 Jun 11;557:122-126. (PMID: 33862455)
      FEBS Lett. 2003 Apr 10;540(1-3):229-33. (PMID: 12681513)
      Biochim Biophys Acta. 2011 Apr;1808(4):1161-9. (PMID: 21262195)
      Biochemistry. 2023 Jun 20;62(12):1906-1915. (PMID: 37246528)
      Proc Natl Acad Sci U S A. 2018 Jul 10;115(28):7410-7415. (PMID: 29941593)
      Mol Pharm. 2018 Jan 2;15(1):289-299. (PMID: 29200307)
      ACS Chem Neurosci. 2020 Dec 16;11(24):4336-4350. (PMID: 33269918)
      Protein Sci. 2018 Jul;27(7):1151-1165. (PMID: 29493036)
      J Mol Biol. 2009 Feb 13;386(1):81-96. (PMID: 19111557)
      Elife. 2017 Jun 27;6:. (PMID: 28653619)
      ACS Chem Neurosci. 2016 Oct 19;7(10):1433-1441. (PMID: 27454141)
      J Virol. 2013 Dec;87(23):12583-91. (PMID: 24027327)
      Biophys J. 2009 Nov 4;97(9):2474-83. (PMID: 19883590)
      J Am Chem Soc. 2009 Dec 16;131(49):17972-9. (PMID: 19995078)
      J Virol. 2009 Jan;83(1):73-80. (PMID: 18945786)
      J Chem Phys. 2007 Jan 7;126(1):014101. (PMID: 17212484)
      J Chem Theory Comput. 2013 Jan 8;9(1):687-97. (PMID: 26589065)
      FEBS Lett. 2011 Mar 9;585(5):749-54. (PMID: 21320494)
      J Phys Chem B. 2007 Jul 12;111(27):7812-24. (PMID: 17569554)
    • Accession Number:
      0 (Lipid Bilayers)
      4QD397987E (Histidine)
      0 (Peptides)
      0 (Phosphatidylcholines)
      0 (Phosphatidylglycerols)
    • Publication Date:
      Date Created: 20231016 Date Completed: 20231027 Latest Revision: 20231101
    • Publication Date:
      20240514
    • Accession Number:
      PMC10614185
    • Accession Number:
      10.1021/acs.jpcb.3c05385
    • Accession Number:
      37843472