Mechanism of Paris polyphylla saponin II inducing autophagic to inhibit angiogenesis of cervical cancer.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer Verlag Country of Publication: Germany NLM ID: 0326264 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-1912 (Electronic) Linking ISSN: 00281298 NLM ISO Abbreviation: Naunyn Schmiedebergs Arch Pharmacol Subsets: MEDLINE
    • Publication Information:
      Original Publication: Berlin, New York, Springer Verlag.
    • Subject Terms:
    • Abstract:
      Paris polyphylla saponin II (PPII) has good biological activity in inhibiting tumor angiogenesis. However, the mechanism of its action is still unclear. This study first observed the inhibitory effect of PPII on cervical cancer cells (Hela) through the establishment of MTT and nude mouse subcutaneous transplantation tumor models. Afterwards, then, we collected Hela cell supernatant for culturing HUVEC cells and treated it with PPII. Observe the invasion, migration, and lumen formation ability of drugs through Transwell, cell scratch test, and angiogenesis experiment. MDC staining was used to observe positive staining in the perinuclear area, AO staining was used to observe acidic areas, and transmission electron microscopy staining was used to observe ultrastructure and autophagy. In addition, the effects of PPII on autophagy- and angiogenesis-related protein expression were detected by Western blotting and quantitative reverse transcriptase polymerase chain reaction. Finally, HUVECs were treated with autophagy inhibitors 3-MA, CQ, and PI3K inhibitor LY294002, respectively. The results showed that the autophagy level of cells treated with PPII was significantly increased. In addition, adding autophagy inhibitors can effectively inhibit angiogenesis in cervical cancer. Further research suggests that PPII induces autophagy in HUVEC cells by regulating the PI3K/AKT/mTOR signaling pathway, thereby affecting angiogenesis and inhibiting Hela cell proliferation, lumen formation, invasion, and migration.
      (© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
    • References:
      Barthet VJA, Brucoli M, Ladds MJGW, Nössing C, Kiourtis C, Baudot AD, O’Prey J, Zunino B, Müller M, May S et al (2021) Autophagy suppresses the formation of hepatocyte-derived cancer-initiating ductular progenitor cells in the liver. Sci Adv 7:eabf9141. https://doi.org/10.1126/sciadv.abf9141.
      Chen M, Ye K, Zhang B, Xin Q, Li P, Kong A-N, Wen X, Yang J (2019) Paris saponin II inhibits colorectal carcinogenesis by regulating mitochondrial fission and NF-κB pathway. Pharmacol Res 139:273–285. https://doi.org/10.1016/j.phrs.2018.11.029. (PMID: 10.1016/j.phrs.2018.11.02930471409)
      Chen Y-Y, Chen C-H, Lin W-C, Tung C-W, Chen Y-C, Yang S-H, Huang B-M, Chen R-J (2021) The role of autophagy in anti-cancer and health promoting effects of cordycepin. Molecules 26:4954. https://doi.org/10.3390/molecules26164954. (PMID: 10.3390/molecules26164954344435418400201)
      Chen W, Chen F, Gong M, Ye L, Weng D, Jin Z, Wang J (2023) Fenofibrate suppresses the progression of hepatoma by downregulating osteopontin through inhibiting the PI3K/AKT/Twist pathway. Naunyn-Schmiedeberg’s Arch Pharmacol. https://doi.org/10.1007/s00210-023-02604-4. (PMID: 10.1007/s00210-023-02604-4)
      Cohen CM, Wentzensen N, Castle PE, Schiffman M, Zuna R, Arend RC, Clarke MA (2023) Racial and ethnic disparities in cervical cancer incidence, survival, and mortality by histologic subtype. JCO 41:1059–1068. https://doi.org/10.1200/JCO.22.01424. (PMID: 10.1200/JCO.22.01424)
      Dewangan J, Srivastava S, Mishra S, Divakar A, Kumar S, Rath SK (2019) Salinomycin inhibits breast cancer progression via targeting HIF-1α/VEGF mediated tumor angiogenesis in vitro and in vivo. Biochem Pharmacol 164:326–335. https://doi.org/10.1016/j.bcp.2019.04.026. (PMID: 10.1016/j.bcp.2019.04.02631028743)
      Fukuda T, Wada-Hiraike O (2022) The two-faced role of autophagy in endometrial cancer. Front Cell Dev Biol 10:839416. https://doi.org/10.3389/fcell.2022.839416. (PMID: 10.3389/fcell.2022.839416354336989008213)
      Galluzzi L, Green DR (2019) Autophagy-independent functions of the autophagy machinery. Cell 177:1682–1699. https://doi.org/10.1016/j.cell.2019.05.026. (PMID: 10.1016/j.cell.2019.05.026311999167173070)
      Gubbiotti MA, Buraschi S, Kapoor A, Iozzo RV (2020) Proteoglycan signaling in tumor angiogenesis and endothelial cell autophagy. Semin Cancer Biol 62:1–8. https://doi.org/10.1016/j.semcancer.2019.05.003. (PMID: 10.1016/j.semcancer.2019.05.00331078640)
      Huang M, Qiu Q, Xiao Y, Zeng S, Zhan M, Shi M, Zou Y, Ye Y, Liang L, Yang X et al (2016) BET bromodomain suppression inhibits VEGF-induced angiogenesis and vascular permeability by blocking VEGFR2-mediated activation of PAK1 and eNOS. Sci Rep 6:23770. https://doi.org/10.1038/srep23770. (PMID: 10.1038/srep23770270443284820704)
      Jin G, Yang Y, Liu K, Zhao J, Chen X, Liu H, Bai R, Li X, Jiang Y, Zhang X et al (2017) Combination curcumin and (−)-epigallocatechin-3-gallate inhibits colorectal carcinoma microenvironment-induced angiogenesis by JAK/STAT3/IL-8 pathway. Oncogenesis 6:e384–e384. https://doi.org/10.1038/oncsis.2017.84. (PMID: 10.1038/oncsis.2017.84289678755668882)
      Kardideh B, Samimi Z, Norooznezhad F, Kiani S, Mansouri K (2019) Autophagy, cancer and angiogenesis: where is the link? Cell Biosci 9:65. https://doi.org/10.1186/s13578-019-0327-6. (PMID: 10.1186/s13578-019-0327-6314283116693242)
      Kshetrimayum V, Heisnam R, Keithellakpam OS, Radhakrishnanand P, Akula SJ, Mukherjee PK, Sharma N (2023) Paris Polyphylla Sm. Induces reactive oxygen species and caspase 3-mediated apoptosis in colorectal cancer cells in vitro and potentiates the therapeutic significance of fluorouracil and cisplatin. Plants 12:1446. https://doi.org/10.3390/plants12071446.
      Kumar VBS, Anjali K (2022) Tumour generated exosomal miRNAs: a major player in tumour angiogenesis. Biochim Biophys Acta (BBA) Mol Basis Dis 1868:166383. https://doi.org/10.1016/j.bbadis.2022.166383.
      Levine B, Kroemer G (2019) Biological functions of autophagy genes: a disease perspective. Cell 176:11–42. https://doi.org/10.1016/j.cell.2018.09.048. (PMID: 10.1016/j.cell.2018.09.048306339016347410)
      Li X, Lu Q, Xie W, Wang Y, Wang G (2018) Anti-tumor effects of triptolide on angiogenesis and cell apoptosis in osteosarcoma cells by inducing autophagy via repressing Wnt/β-catenin signaling. Biochem Biophys Res Commun 496:443–449. https://doi.org/10.1016/j.bbrc.2018.01.052. (PMID: 10.1016/j.bbrc.2018.01.05229330051)
      Li J, Wu Z, Chen G, Wang X, Zhu X, Zhang Y, Zhang R, Wu W, Zhu Y, Ma L et al (2023) Formosanin C inhibits non-small-cell lung cancer progression by blocking MCT4/CD147-mediated lactate export. Phytomedicine 109:154618. https://doi.org/10.1016/j.phymed.2022.154618. (PMID: 10.1016/j.phymed.2022.15461836610137)
      Liang P, Jiang B, Li Y, Liu Z, Zhang P, Zhang M, Huang X, Xiao X (2018) Autophagy promotes angiogenesis via AMPK/Akt/mTOR signaling during the recovery of heat-denatured endothelial cells. Cell Death Dis 9:1152. https://doi.org/10.1038/s41419-018-1194-5. (PMID: 10.1038/s41419-018-1194-5304554206242874)
      Lin L-T, Uen W-C, Choong C-Y, Shi Y-C, Lee B-H, Tai C-J, Tai C-J (2019) Paris Polyphylla inhibits colorectal cancer cells via inducing autophagy and enhancing the efficacy of chemotherapeutic drug doxorubicin. Molecules 24:2102. https://doi.org/10.3390/molecules24112102. (PMID: 10.3390/molecules24112102311636626600962)
      Marsh T, Debnath J (2020) Autophagy suppresses breast cancer metastasis by degrading NBR1. Autophagy 16:1164–1165. https://doi.org/10.1080/15548627.2020.1753001. (PMID: 10.1080/15548627.2020.1753001322677867469534)
      Patra K, Jana S, Sarkar A, Mandal DP, Bhattacharjee S (2019) The inhibition of hypoxia-induced angiogenesis and metastasis by cinnamaldehyde is mediated by decreasing HIF-1α protein synthesis via PI3K/Akt pathway. BioFactors 45:401–415. https://doi.org/10.1002/biof.1499. (PMID: 10.1002/biof.149930854715)
      Poillet-Perez L, Sharp DW, Yang Y, Laddha SV, Ibrahim M, Bommareddy PK, Hu ZS, Vieth J, Haas M, Bosenberg MW et al (2020) Autophagy promotes growth of tumors with high mutational burden by inhibiting a T-cell immune response. Nat Cancer 1:923–934. https://doi.org/10.1038/s43018-020-00110-7. (PMID: 10.1038/s43018-020-00110-7344764088409526)
      Sadremomtaz A, Mansouri K, Alemzadeh G, Safa M, Rastaghi AE, Asghari SM (2018) Dual blockade of VEGFR1 and VEGFR2 by a novel peptide abrogates VEGF-Driven angiogenesis, tumor growth, and metastasis through PI3K/AKT and MAPK/ERK1/2 pathway. Biochim Biophys Acta (BBA) Gen Subj 1862:2688–2700. https://doi.org/10.1016/j.bbagen.2018.08.013.
      Schaaf MB, Houbaert D, Meçe O, Agostinis P (2019) Autophagy in endothelial cells and tumor angiogenesis. Cell Death Differ 26:665–679. https://doi.org/10.1038/s41418-019-0287-8. (PMID: 10.1038/s41418-019-0287-8306926426460396)
      Schmid MP, Lindegaard JC, Mahantshetty U, Tanderup K, Jürgenliemk-Schulz I, Haie-Meder C, Fokdal LU, Sturdza A, Hoskin P, Segedin B et al (2023) Risk Factors for Local failure following chemoradiation and magnetic resonance image–guided brachytherapy in locally advanced cervical cancer: results from the EMBRACE-I study. JCO 41:1933–1942. https://doi.org/10.1200/JCO.22.01096. (PMID: 10.1200/JCO.22.01096)
      Schubert M, Bauerschlag DO, Muallem MZ, Maass N, Alkatout I (2023) Challenges in the diagnosis and individualized treatment of cervical cancer. Medicina 59:925. https://doi.org/10.3390/medicina59050925. (PMID: 10.3390/medicina590509253724115710224285)
      Song L, Yao L, Zhang L, Piao Z, Lu Y (2020) Schizandrol A Protects against Aβ1–42-induced autophagy via activation of PI3K/AKT/mTOR pathway in SH-SY5Y cells and primary hippocampal neurons. Naunyn-Schmiedeberg’s Arch Pharmacol 393:1739–1752. https://doi.org/10.1007/s00210-019-01792-2. (PMID: 10.1007/s00210-019-01792-2)
      Sun X, Wang D, Zhang T, Lu X, Duan F, Ju L, Zhuang X, Jiang X (2020) Eugenol attenuates cerebral ischemia-reperfusion injury by enhancing autophagy via AMPK-mTOR-P70S6K pathway. Front Pharmacol 11:84. https://doi.org/10.3389/fphar.2020.00084. (PMID: 10.3389/fphar.2020.00084321534047047211)
      Suzuki M, Nagane M, Kato K, Yamauchi A, Shimizu T, Yamashita H, Aihara N, Kamiie J, Kawashima N, Naito S et al (2021) Endothelial ganglioside GM3 regulates angiogenesis in solid tumors. Biochem Biophys Res Commun 569:10–16. https://doi.org/10.1016/j.bbrc.2021.06.063. (PMID: 10.1016/j.bbrc.2021.06.06334216992)
      Wang D, He J, Huang B, Liu S, Zhu H, Xu T (2020a) Emerging role of the hippo pathway in autophagy. Cell Death Dis 11:880. https://doi.org/10.1038/s41419-020-03069-6. (PMID: 10.1038/s41419-020-03069-6330823137576599)
      Wang R, Ma Y, Zhan S, Zhang G, Cao L, Zhang X, Shi T, Chen W (2020b) B7–H3 Promotes colorectal cancer angiogenesis through activating the NF-κB pathway to induce VEGFA expression. Cell Death Dis 11:55. https://doi.org/10.1038/s41419-020-2252-3. (PMID: 10.1038/s41419-020-2252-3319743616978425)
      Yang Q, Ni L, Imani S, Xiang Z, Hai R, Ding R, Fu S, Wu JB, Wen Q (2020) Anlotinib suppresses colorectal cancer proliferation and angiogenesis via inhibition of AKT/ERK signaling cascade. CMAR 12:4937–4948. https://doi.org/10.2147/CMAR.S252181. (PMID: 10.2147/CMAR.S252181)
      Zhu P, Liu Z, Zhou J, Chen Y (2018) Tanshinol inhibits the growth, migration and invasion of hepatocellular carcinoma cells via regulating the PI3K-AKT signaling pathway. OTT 12:87–99. https://doi.org/10.2147/OTT.S185997. (PMID: 10.2147/OTT.S185997)
      Zhu Y, Liu X, Zhao P, Zhao H, Gao W, Wang L (2020) Celastrol suppresses glioma vasculogenic mimicry formation and angiogenesis by blocking the PI3K/Akt/mTOR signaling pathway. Front Pharmacol 11:25. https://doi.org/10.3389/fphar.2020.00025. (PMID: 10.3389/fphar.2020.00025321167027025498)
    • Grant Information:
      2021zrzd08 The Key Natural Science Project of Anhui University of Chinese Medicine; 2308085MH305 Anhui Provincial Natural Science Foundation; KJ2021A0591,2022AH050529 Key projects of natural science research in Anhui Universities; 81903859, 82305023, 81673650, 81973488, The present study was supported by the Fund of the National Nature Science Foundations grant; S202110369078 he Innovation training program for college students in Anhui Province; 2022rcyb016 The first batch of talent support plan projects of Anhui University of Chinese medicine in 2022
    • Contributed Indexing:
      Keywords: Paris polyphylla saponin II; Angiogenesis; Autophagy; Cervical cancer
    • Accession Number:
      0 (Saponins)
      EC 2.7.11.1 (TOR Serine-Threonine Kinases)
      0 (Angiogenesis Inhibitors)
      EC 2.7.11.1 (Proto-Oncogene Proteins c-akt)
      K49P2K8WLX (Diosgenin)
      0 (ruscogenin-1-O-(glucopyranosyl-(1-2))(xylopyranosyl-(1-3))fucopyranoside)
      0 (Antineoplastic Agents, Phytogenic)
    • Publication Date:
      Date Created: 20231031 Date Completed: 20240506 Latest Revision: 20240514
    • Publication Date:
      20240515
    • Accession Number:
      10.1007/s00210-023-02794-x
    • Accession Number:
      37906274