Bias translation: The final frontier?

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Kenakin T;Kenakin T
  • Source:
    British journal of pharmacology [Br J Pharmacol] 2024 May; Vol. 181 (9), pp. 1345-1360. Date of Electronic Publication: 2024 Feb 29.
  • Publication Type:
    Journal Article; Review
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: Wiley Country of Publication: England NLM ID: 7502536 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-5381 (Electronic) Linking ISSN: 00071188 NLM ISO Abbreviation: Br J Pharmacol Subsets: MEDLINE
    • Publication Information:
      Publication: London : Wiley
      Original Publication: London, Macmillian Journals Ltd.
    • Subject Terms:
    • Abstract:
      Biased signalling is a natural result of GPCR allosteric function and should be expected from any and all synthetic and natural agonists. Therefore, it may be encountered in all agonist discovery projects and must be considered as a beneficial (or possible detrimental) feature of new candidate molecules. While bias is detected easily, the synoptic nature of GPCR signalling makes translation of simple in vitro bias to complex in vivo systems problematic. The practical outcome of this is a difficulty in predicting the therapeutic value of biased signalling due to the failure of translation of identified biased signalling to in vivo agonism. This is discussed in this review as well as some new ways forward to improve this translation process and better exploit this powerful pharmacologic mechanism.
      (© 2024 British Pharmacological Society.)
    • References:
      Abdul‐Ridha, A., Lopez, L., Keov, P., Thal, D. M., Mistry, S. N., Sexton, P. M., Lane, J. R., Canals, M., & Christopoulos, A. (2014). Molecular determinants of allosteric modulation at the M1 muscarinic acetylcholine receptor. The Journal of Biological Chemistry, 289, 6068–6079.
      Alexander, S. P. H., Christopoulos, A., Davenport, A. P., Kelly, E., Mathie, A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Pawson, A. J., Southan, C., Davies, J. A., Abbracchio, M. P., Alexander, W., Al‐Hosaini, K., Bäck, M., Barnes, N. M., Bathgate, R., … Ye, R. D. (2021). The Concise Guide to PHARMACOLOGY 2021/22: G protein‐coupled receptors. British Journal of Pharmacology, 178, S27–S156.
      Allen, J. A., Yost, J. M., Setola, V., Chen, X., Sassano, M. F., Chen, M., Peterson, S., Yadav, P. N., Huang, X. P., Feng, B., Jensen, N. H., Che, X., Bai, X., Frye, S. V., Wetsel, W. C., Caron, M. G., Javitch, J. A., Roth, B. L., & Jin, J. (2011). Discovery of β‐arrestin‐biased dopamine D2 ligands for probing signal transduction pathways essential for antipsychotic efficacy. Proceedings of the National Academy of Sciences, 108, 18488–18493. https://doi.org/10.1073/pnas.1104807108.
      Arrowsmith, J. (2011). Trial watch: Phase II failures: 2008–2010. Nature Reviews. Drug Discovery, 10, 328–329. https://doi.org/10.1038/nrd3439.
      Audet, N., Galés, C., Archer‐Lahlou, E., Vallières, M., Schiller, P. W., Bouvier, M., & Pineyro, G. (2008). Bioluminescence resonance energy transfer assays reveal ligand‐specific conformational changes within preformed signaling complexes containing delta‐opioid receptors and heterotrimeric G proteins. The Journal of Biological Chemistry, 283, 15078–15088. https://doi.org/10.1074/jbc.M707941200.
      Aurelio, L., Baltos, J.‐A., Ford, L., Nguyen, A. T. N., Jörg, M., Devine, S. M., Valant, C., White, P. J., Christopoulos, A., May, L. T., & Scammells, P. J. (2018). A structure‐activity relationship study of bitopic N6‐substituted adenosine derivatives as biased adenosine A1 receptor agonists. Journal of Medicinal Chemistry, 61, 2087–2103. https://doi.org/10.1021/acs.jmedchem.8b00047.
      Avet, C., Mancini, A., Breton, B., Le Gouill, C., Hauser, A. S., Normand, C., Kobayashi, H., Gross, F., Hogue, M., Lukasheva, V., St‐Onge, S., Carrier, M., Héroux, M., Morissette, S., Fauman, E. B., Fortin, J. P., Schann, S., Leroy, X., Gloriam, D. E., & Bouvier, M. (2022). Effector membrane translocation biosensors reveal G protein and beta arrestin coupling profiles of 100 therapeutically relevant GPCRs. eLife, 11, 2020. https://doi.org/10.7554/eLife.74101.
      Azzi, M., Charest, P. G., Angers, S., Rousseau, G., Kohout, T., Bouvier, M., & Piñeyro, G. (2003). Beta‐arrestin‐mediated activation of MAPK by inverse agonists reveals distinct active conformations for G protein‐coupled receptors. Proceedings of the National Academy of Sciences of the United States of America, 100(20), 11406–11411. https://doi.org/10.1073/pnas.1936664100.
      Baker, J. G., Hall, I. P., & Hill, S. J. (2003). Agonist and inverse agonist actions of beta blockers at the human beta 2‐adrenoceptor provide evidence for agonist‐directed signaling. Molecular Pharmacology, 64, 1357–1369. https://doi.org/10.1124/mol.64.6.1357.
      Baltos, J. A., Vecchio, E. A., Harris, M. A., Qin, C. X., Ritchie, R. H., Christopoulos, A., White, P. J., & May, L. T. (2017). Capadenoson, a clinically trialed partial adenosine A1 receptor agonist, can stimulate adenosine A2B receptor biased agonism. Biochemical Pharmacology, 135, 79–89. https://doi.org/10.1016/j.bcp.2017.03.014.
      Black, J. W., & Leff, P. (1983). Operational models of pharmacological agonism. Proceedings of the Royal Society of London ‐ Series B: Biological Sciences, 220, 141–162.
      Bohn, L. M., Gainetdinov, R. R., Sotnikova, T. D., Medvedev, I. O., Lefkowitz, R. J., Dykstra, L. A., & Caron, M. G. (2003). Enhanced rewarding properties of morphine, but not cocaine, in beta (arrestin)‐2 knock‐out mice. The Journal of Neuroscience, 23, 10265–10273. https://doi.org/10.1523/JNEUROSCI.23-32-10265.2003.
      Bunnage, M. E., Chekler, E. L. P., & Jones, L. H. (2013). Target validation using chemical probes. Nature Chemistry & Biology, 9, 195–199. https://doi.org/10.1038/nchembio.1197.
      Cahill, T. J. I. I. I., Thomsen, A. R. B., Tarrasch, J. T., Plouffe, B., Nguyen, A. H., Yang, F., Huang, L. Y., Kahsai, A. W., Bassoni, D. L., Gavino, B. J., Lamerdin, J. E., Triest, S., Shukla, A. K., Berger, B., Little, J. IV, Antar, A., Blanc, A., Qu, C. X., Chen, X., … Lefkowitz, R. J. (2017). Distinct conformations of GPCR–β‐arrestin complexes mediate desensitization, signaling, and endocytosis. Proceedings of the National Academy of Sciences, 114, 2562–2567. https://doi.org/10.1073/pnas.1701529114.
      Cai, B., El Daibani, A., Bai, Y., Che, T., & Krusemark, C. J. (2023). Direct selection of DNA‐encoded libraries for biased agonists of GPCRs on live cells. JACS, 3(4), 1076–1088. https://doi.org/10.1021/jacsau.2c00674.
      Cao, Y., van der Velden, W. J. C., Namkung, Y., Nivedha, A. K., Cho, A., Sedki, D., Holleran, B., Leduc, R., Muk, S., le, K., Bhattacharya, S., Vaidehi, N., & Laporte, S. A. (2023). Unraveling allostery within the angiotensin II type 1 receptor for Gαq and β‐arrestin coupling. Science Signaling, 16(797), eadf2173. https://doi.org/10.1126/scisignal.adf2173.
      Caroli, J., Mamyrbekov, A., Harpsøe, K., Gardizi, S., Dörries, L., Ghosh, E., Hauser, A. S., Kooistra, A. J., & Gloriam, D. E. (2023). A community Biased Signaling Atlas. Chemical Biology, 19, 531–535. https://doi.org/10.1038/s41589-023-01292-8.
      Che, T., Dwivedi‐Agnihotri, H., Shukla, A. K., & Roth, B. L. (2021). Biased ligands at opioid receptors: Current status and future directions. Science Signaling, 14(677), eaav0320. https://doi.org/10.1126/scisignal.aav0320.
      Chen, K., Zhang, C., Lin, S., Yan, X., Cai, H., Yi, C., Ma, L., Chu, X., Liu, Y., Zhu, Y., Han, S., Zhao, Q., & Wu, B. (2023). Tail engagement of arrestin at the glucagon receptor. Nature, 620, 904–910. https://doi.org/10.1038/s41586-023-06420-x.
      Chen, Q., & Tesmer, J. J. G. (2022). G protein‐coupled receptor interactions with arrestins and GCR kinases: The unresolved issue of signal bias. The Journal of Biological Chemistry, 298, 102279. https://doi.org/10.1016/j.jbc.2022.102279.
      Cho, H. P., Engers, D. W., Venable, D. F., Niswender, C. M., Lindsley, C. W., Conn, P. J., Emmitte, K. A., & Rodriguez, A. L. (2014). A novel class of succinimide‐derived negative allosteric modulators of metabotropic glutamate receptor subtype 1 provides insight into a disconnect in activity between the rat and human receptors. ACS Chemical Neuroscience, 5, 597–610.
      Christmanson, L., Westermark, P., & Betsholtz, C. (1994). Islet amyloid polypeptide stimulates cyclic AMP accumulation via the porcine calcitonin receptor. Biochemical and Biophysical Research Communications, 205, 1226–1235. https://doi.org/10.1006/bbrc.1994.2796.
      Conibear, A. E., Asghar, J., Hill, R., Henderson, G., Borbely, E., Tekus, V., Helyes, Z., Palandri, J., Bailey, C., Starke, I., von Mentzer, B., Kendall, D., & Kelly, E. (2020). A novel G protein‐biased agonist at the δ opioid receptor with analgesic efficacy in models of chronic pain. The Journal of Pharmacology and Experimental Therapeutics, 372, 224–236. https://doi.org/10.1124/jpet.119.258640.
      Conibear, A. E., & Kelly, E. (2019). A biased view of μ‐opioid receptors? Molecular Pharmacology, 96, 542–549. https://doi.org/10.1124/mol.119.115956.
      Cook, D., Brown, D., Alexander, R., March, R., Morgan, P., Satterthwaite, G., & Pangalos, M. N. (2014). Lessons learned from the fate of AstraZeneca's drug pipeline: A five‐dimensional framework. Nature Reviews. Drug Discovery, 13, 419–431. https://doi.org/10.1038/nrd4309.
      Darbalaei, S., Yuliantie, E., Dai, A., Chang, R., Zhao, P., Yang, D., Wang, M. W., Sexton, P. M., & Wootten, D. (2020). Evaluation of biased agonism mediated by dual agonists of the GLP‐1 and glucagon receptors. Biochemical Pharmacology, 180, 114150. https://doi.org/10.1016/j.bcp.2020.114150.
      Devost, D., Sleno, R., Pétrin, D., Zhang, A., Shinjo, Y., Okde, R., Aoki, J., Inoue, A., & Hébert, T. E. (2017). Conformational profiling of the AT1 angiotensin II receptor reflects biased agonism, G protein coupling, and cellular context. The Journal of Biological Chemistry, 292, 5443–5456. https://doi.org/10.1074/jbc.M116.763854.
      Drube, J., Haider, R. S., Matthees, E., Reichel, M., Zeiner, J., Fritzwanker, S., Ziegler, C., Barz, S., Klement, L., Filor, J., Weitzel, V., Kliewer, A., Miess‐Tanneberg, E., Kostenis, E., Schulz, S., & Hoffmann, C. (2022). GPCR kinase knockout cells reveal the impact of individual GRKs on arrestin binding and GPCR regulation. Nature Communications, 13, 540. https://doi.org/10.1038/s41467-022-28152-8.
      Duan, J., Liu, H., Zhao, F., Yuan, Q., Ji, Y., Cai, X., He, X., Li, X., Li, J., Wu, K., & Gao, T. (2023). GPCR activation and GRK2 assembly by a biased intracellular agonist. Nature, 620(7974), 676–681.
      Eason, M. G., Kurose, H., Holt, B. D., Raymond, J. R., & Liggett, S. B. (1992). Simultaneous coupling of alpha 2‐adrenergic receptors to two G‐proteins with opposing effects. Subtype‐selective coupling of alpha 2C10, alpha 2C4, and alpha 2C2 adrenergic receptors to Gi and Gs. The Journal of Biological Chemistry, 267, 15795–15801. https://doi.org/10.1016/S0021-9258(19)49605-1.
      Eiger, D. S., Boldizsar, N., Honeycutt, C. C., Gardner, J., Kirchner, S., Hicks, C., Choi, I., Pham, U., Zheng, K., Warman, A., Smith, J. S., Zhang, J. Y., & Rajagopal, S. (2022). Location bias contributes to functionally selective responses of biased CXCR3 agonists. Nature Communications, 13, 5846. https://doi.org/10.1038/s41467-022-33569-2.
      El Daibani, A., Paggi, J. M., Kim, K., Laloudakis, Y. D., Popov, P., Bernhard, S. M., Krumm, B. E., Olsen, R. H. J., Diberto, J., Carroll, F. I., Katritch, V., Wünsch, B., Dror, R. O., & Che, T. (2023). Molecular mechanism of biased signaling at the kappa opioid receptor. Nature Communications, 14(1), 1338. https://doi.org/10.1038/s41467-023-37041-7.
      Erickson, C. E., Gul, R., Blessing, C. P., Nguyen, J., Liu, T., Pulakat, L., Bastepe, M., Jackson, E. K., & Andresen, B. T. (2013). The β‐blocker nebivolol is a GRK/β‐arrestin biased agonist. PLoS ONE, 8, e71980. https://doi.org/10.1371/journal.pone.0071980.
      Ferrari, S. L., Pierroz, D. D., Glatt, V., Goddard, D. S., Bianchi, E. N., Lin, F. T., Manen, D., & Bouxsein, M. L. (2005). Bone response to intermittent parathyroid hormone is altered in mice null for β‐arrestin2. Endocrinology, 146, 1854–1862. https://doi.org/10.1210/en.2004-1282.
      Fletcher, M. M., Halls, M. L., Zhao, P., Clydesdale, L., Christopoulos, A., Sexton, P. M., & Wootten, D. (2018). Glucagon‐like peptide‐1 receptor internalization controls spatiotemporal signalling mediated by biased agonists. Biochemical Pharmacology, 156, 406–419. https://doi.org/10.1016/j.bcp.2018.09.003.
      Gentry, P. R., Kokubo, M., Bridges, T. M., Kett, N. R., Harp, J. M., Cho, H. P., Smith, E., Chase, P., Hodder, P. S., Niswender, C. M., Daniels, J. S., Conn, P. J., Wood, M. R., & Lindsley, C. W. (2013). Discovery of the first M5‐selective and CNS penetrant negative allosteric modulator (NAM) of a muscarinic acetylcholine receptor: (S)‐9b‐(4‐chlorophenyl)‐1‐(3,4‐difluorobenzoyl)‐2,3‐dihydro‐1H‐imidazo[2,1‐a] isoindol‐5(9bH)‐one (ML375). Journal of Medicinal Chemistry, 56, 9351–9355. https://doi.org/10.1021/jm4013246.
      Ghanouni, P., Gryczynski, Z., Steenhuis, J. J., Lee, T. W., Farrens, D. L., Lakowicz, J. R., & Kobilka, B. K. (2001). Functionally different agonists induce distinct conformations in the G protein coupling domain of the beta 2 adrenergic receptor. The Journal of Biological Chemistry, 276, 24433–24436. https://doi.org/10.1074/jbc.C100162200.
      Gillis, A., Gondin, A. B., Kliewer, A., Sanchez, J., Lim, H. D., Alamein, C., Manandhar, P., Santiago, M., Fritzwanker, S., Schmiedel, F., Katte, T. A., Reekie, T., Grimsey, N. L., Kassiou, M., Kellam, B., Krasel, C., Halls, M. L., Connor, M., Lane, J. R., … Canals, M. (2020). Low intrinsic efficacy for G protein activation can explain the improved side effect profiles of new opioid agonists. Science Signaling, 13(625), eaaz3140. https://doi.org/10.1126/scisignal.aaz3140.
      Gregory, K. J., Hall, N. E., Tobin, A. B., Sexton, P. M., & Christopoulos, A. (2010). Identification of orthosteric and allosteric site mutations in M2 muscarinic acetylcholine receptors that contribute to ligand‐selective signaling bias. The Journal of Biological Chemistry, 285, 7459–7474. https://doi.org/10.1074/jbc.M109.094011.
      Haider, R. S., Reichel, M., Matthees, E. S. F., & Hoffmann, C. (2023). Conformational flexibility of β‐arrestins—How these scaffolding proteins guide and transform the functionality of GPCRs. BioEssays, 45, 2300053. https://doi.org/10.1002/bies.202300053.
      Hellyer, S. D., Sengmany, K., Keller, A. N., Christopoulos, A., Leach, K., & Gregory, K. J. (2020). Probe dependence and biased potentiation of metabotropic glutamate receptor 5 is mediated by differential ligand interactions in the common allosteric binding site. Biochemical Pharmacology, 177, 114013. https://doi.org/10.1016/j.bcp.2020.114013.
      Hoare, S. R. J., Tewson, P. H., Quinn, A. M., & Hughes, T. E. (2020). A kinetic method for measuring agonist efficacy and ligand bias using high resolution biosensors and a kinetic data analysis framework. Scientific Reports, 10(1), 1766. https://doi.org/10.1038/s41598-020-58421-9.
      Hoare, S. R. J., Tewson, P. H., Quinn, A. M., Hughes, T. E., & Bridge, L. J. (2020). Analyzing kinetic signaling data for G‐protein‐coupled receptors. Scientific Reports, 10(1), 12263. https://doi.org/10.1038/s41598-020-67844-3.
      Inoue, A., Raimondi, F., Kadji, F. M. N., Singh, G., Kishi, T., Uwamizu, A., Ono, Y., Shinjo, Y., Ishida, S., Arang, N., Kawakami, K., Gutkind, J. S., Aoki, J., & Russell, R. B. (2019). Illuminating G‐protein‐coupling selectivity of GPCRs. Cell, 177(7), 1933–1947.e25. https://doi.org/10.1016/j.cell.2019.04.044.
      Jarpe, M. B., Knall, C., Mitchell, F. M., Buhl, A. M., Duzic, E., & Johnson, G. L. (1998). [d‐Arg1,d‐Phe5,d‐Trp7,9,Leu11]substance P acts as a biased agonist toward neuropeptide and chemokine receptors. The Journal of Biological Chemistry, 273, 3097–3104. https://doi.org/10.1074/jbc.273.5.3097.
      Jiang, Y., Yeasmin, M., Gondin, A. B., Christopoulos, A., Valant, C., Burger, W. A. C., & Thal, D. M. (2023). Importance of receptor expression in the classification of novel ligands at the M2 muscarinic acetylcholine receptor. British Journal of Pharmacology, 180, 1–13. https://doi.org/10.1111/bph.16021.
      Johnson, T. A., Milan‐Lobo, L., Che, T., Ferwerda, M., Lambu, E., McIntosh, N. L., Li, F., He, L., Lorig‐Roach, N., Crews, P., & Whistler, J. L. (2017). Identification of the first marine‐derived opioid receptor “balanced” agonist with a signaling profile that resembles the endorphins. ACS Chemical Neuroscience, 8, 473–485. https://doi.org/10.1021/acschemneuro.6b00167.
      Jones, B. (2021). The therapeutic potential of GLP‐1 receptor biased agonism. British Journal of Pharmacology, 179, 492–510.
      Jozwiak, K., Toll, L., Jimenez, L., Woo, A. Y.‐H., Xiao, R.‐P., & Wainer, I. W. (2010). The effect of stereochemistry on the thermodynamic characteristics of the binding of fenoterol stereoisomers to the beta(2)‐adrenoceptor. Biochemical Pharmacology, 79, 1610–1615. https://doi.org/10.1016/j.bcp.2010.01.035.
      Kayser, C., Melkes, B., Derieux, C., & Bock, A. (2023). Spatiotemporal GPCR signaling illuminated by genetically encoded fluorescent biosensors. Current Opinion in Pharmacology, 71, 102384. https://doi.org/10.1016/j.coph.2023.102384.
      Kenakin, T. (1995). Agonist‐receptor efficacy. II. Agonist trafficking of receptor signals. Trends in Pharmacological Sciences, 16, 232–238. https://doi.org/10.1016/S0165-6147(00)89032-X.
      Kenakin, T. (2005). New concepts in drug discovery: Collateral efficacy and permissive antagonism. Nature Reviews. Drug Discovery, 4, 919–927. https://doi.org/10.1038/nrd1875.
      Kenakin, T. (2017). A scale of agonism and allosteric modulation for assessment of selectivity, bias, and receptor mutation. Molecular Pharmacology, 92, 414–424. https://doi.org/10.1124/mol.117.108787.
      Kenakin, T. (2019). Biased receptor signaling in drug discovery. Pharmacological Reviews, 7, 267–315.
      Kenakin, T., & Onaran, O. (2002). The ligand paradox between affinity and efficacy: Can you be there and not make a difference? Trends in Pharmacological Sciences, 23, 275–280. https://doi.org/10.1016/s0165-6147(02)02036-9.
      Kenakin, T., Watson, C., Muniz‐Medina, V., Christopoulos, A., & Novick, S. (2012). A simple method for quantifying functional selectivity and agonist bias. ACS Chemical Neuroscience, 3, 193–203. https://doi.org/10.1021/cn200111m.
      Kenakin, T. P. (1984). The relative contribution of affinity and efficacy to agonist activity: Organ selectivity of noradrenaline and oxymetazoline with reference to the classification of drug receptors. British Journal of Pharmacology, 81(1), 131–141. https://doi.org/10.1111/j.1476-5381.1984.tb10753.x.
      Kenakin, T. P. (2003). Ligand‐selective receptor conformations revisited: The promise and the problem. Trends in Pharmacological Sciences, 24, 346–354. https://doi.org/10.1016/S0165-6147(03)00167-6.
      Kenakin, T. P. (2021). Biased agonism as allosteric probe dependence. Cellular Signalling, 79, 109844. https://doi.org/10.1016/j.cellsig.2020.109844.
      Kenakin, T. P., & Morgan, P. H. (1989). Theoretical effects of single and multiple transducer receptor coupling proteins on estimates of the relative potency of agonists. Molecular Pharmacology, 35, 214–222.
      Kim, I. M., Tilley, D. G., Chen, J., Salazar, N. C., Whalen, E. J., Violin, J. D., & Rockman, H. A. (2008). β‐Blockers alprenolol and carvedilol stimulate β‐arrestin‐mediated EGFR transactivation. Proceedings of the National Academy of Sciences, 105, 14555–14560. https://doi.org/10.1073/pnas.0804745105.
      Klein Herenbrink, C., Sykes, D. A., Donthamsetti, P., Canals, M., Coudrat, T., Shonberg, J., Scammells, P. J., Capuano, B., Sexton, P. M., Charlton, S. J., Javitch, J. A., Christopoulos, A., & Lane, J. R. (2016). The role of kinetic context in apparent biased agonism at GPCRs. Nature Communications, 7, 10842. https://doi.org/10.1038/ncomms10842.
      Kohout, T. A., Nicholas, S. L., Perry, S. J., Reinhart, G., Junger, S., & Struthers, R. S. (2004). Differential desensitization, receptor phosphorylation, beta‐arrestin recruitment, and ERK1/2 activation by the two endogenous ligands for the CC chemokine receptor. Journal of Biological Chemistry, 279(22), 23214–23222.
      Kolb, P., Kenakin, T., Alexander, S. P. H., Bermudez, M., Bohn, L. M., Breinholt, C. S., Bouvier, M., Hill, S. J., Kostenis, E., Martemyanov, K. A., Neubig, R. R., Onaran, H. O., Rajagopal, S., Roth, B. L., Selent, J., Shukla, A. K., Sommer, M. E., & Gloriam, D. E. (2022). Community guidelines for GPCR ligand bias: IUPHAR review 32. British Journal of Pharmacology, 179, 3651–3674. https://doi.org/10.1111/bph.15811.
      Krumm, B. E., DiBerto, J. F., Olsen, R. H. J., Kang, H. J., Slocum, S. T., Zhang, S., et al. (2023). Neurotensin receptor allosterism revealed in complex with a biased allosteric modulator. Biochemistry, 62, 1233–1248.
      Kudlacek, O., Waldhoer, M., Kassack, M. U., Nickel, P., Salmi, J. I., Freissmuth, M., & Nanoff, C. (2002). Biased inhibition by a suramin analogue of A1‐adenosine receptor/G protein coupling in fused receptor/G protein tandems: The A1‐adenosine receptor is predominantly coupled to Go‐alpha in human brain. Naunyn‐Schmiedeberg's Archives of Pharmacology, 365, 8–16. https://doi.org/10.1007/s00210-001-0493-y.
      Lambert, D., & Calo, G. (2020). Approval of oliceridine (TRV130) for intravenous use in moderate to severe pain in adults. BJA: British Journal of Anaesthesia, 125, e473–e474. https://doi.org/10.1016/j.bja.2020.09.021.
      Laschet, C., Dupuis, N., & Hanson, J. (2019). A dynamic and screening‐compatible nanoluciferase‐based complementation assay enables profiling of individual GPCR–G protein interactions. The Journal of Biological Chemistry, 294, 4079–4090. https://doi.org/10.1074/jbc.RA118.006231.
      Lawler, C. P., Prioleau, C., Lewis, M. M., Mak, C., Jiang, D., Schetz, J. A., Gonzalez, A. M., Sibley, D. R., & Mailman, R. B. (1999). Interactions of the novel antipsychotic aripiprazole (OPC‐14597) with dopamine and serotonin receptor subtypes. Neuropsychopharmacology, 20, 612–627. https://doi.org/10.1016/S0893-133X(98)00099-2.
      Le Rouzic, V., Narayan, A., Hunkle, A., Marrone, G. F., Lu, Z., Majumdar, S., Xu, J., Pan, Y. X., & Pasternak, G. W. (2019). Pharmacological characterization of levorphanol, a G‐protein biased opioid analgesic. Anesthesia and Analgesia, 128, 365–373. https://doi.org/10.1213/ANE.0000000000003360.
      Leandera, M., Tuanb, Y., Megera, A., Cuib, Q., & Raman, S. (2020). Functional plasticity and evolutionary adaptation of allosteric regulation. Proceedings of the National Academy of Sciences, 117, 25445–25454. https://doi.org/10.1073/pnas.2002613117.
      Li, A., Samuel Liu, S., Huang, R., Ahn, S., & Lefkowitz, R. J. (2023). Loss of biased signaling at a G protein‐coupled receptor in overexpressed systems. PLoS ONE, 18, e0283477. https://doi.org/10.1371/journal.pone.0283477.
      Liu, H., Acharya, S., Sudan, S. K., Hu, L., Wu, C., Cao, Y., Li, H., & Zhang, X. (2023). Comparative study of the molecular mechanisms underlying the G protein and β‐arrestin‐dependent pathways that lead to ERKs activation upon stimulation by dopamine D2 receptor. The FEBS Journal, 290, 5204–5233. https://doi.org/10.1111/febs.16921.
      Liu, H., Ma, H., Zeng, X., Wu, C., Acharya, S., Sudan, S. K., & Zhang, X. (2023). Ubiquitination of GRK2 is required for the β‐arrestin‐biased signaling pathway of dopamine D2 receptors to activate ERK kinases. International Journal of Molecular Sciences, 24(12), 10031. https://doi.org/10.3390/ijms241210031.
      Liu, J. J., Horst, R., Katritch, V., Stevens, R. C., & Wüthrich, K. (2012). Biased signaling pathways in β2‐adrenergic receptor characterized by 19F‐NMR. Science, 335, 1106–1110. https://doi.org/10.1126/science.1215802.
      Luscombe, V. B., Baena‐Lopez, L., Bataille, C. J. R., Russell, A. J., & Greaves, D. R. (2023). Kinetic insights into agonist‐dependent signalling bias at the pro‐inflammatory G‐protein coupled receptor GPR84. European Journal of Pharmacology, 956, 175960.
      Luttrell, L. M., Maudsley, S., & Gesty‐Palmer, D. (2018). Translating in vitro ligand bias to in vivo efficacy. Cellular Signalling, 41, 46–55. https://doi.org/10.1016/j.cellsig.2017.05.002.
      Lutz, J. A., Sulima, A., Gutman, E. S., Bow, E. W., Luo, D., Kaska, S., Prisinzano, T. E., Paronis, C. A., Bergman, J., Imler, G. H., Kerr, A. T., Jacobson, A. E., & Rice, K. C. (2023). Discovery of a potent highly biased MOR partial agonist among diastereomeric C9‐hydroxyalkyl‐5‐phenylmorphans. Molecules, 28, 4795. https://doi.org/10.3390/molecules28124795.
      Mack, M., Luckow, B., Nelson, P. J., Cihak, J., Simmons, G., Clapham, P. R., Signoret, N., Marsh, M., Stangassinger, M., Borlat, F., Wells, T. N. C., Schlöndorff, D., & Proudfoot, A. E. I. (1998). Aminooxypentane‐RANTES induces CCR5 internalization but inhibits recycling: A novel inhibitory mechanism of HIV infectivity. The Journal of Experimental Medicine, 187, 1215–1224. https://doi.org/10.1084/jem.187.8.1215.
      Manning, D. R. (2002). Measures of efficacy using G proteins as endpoints: Differential engagement of G proteins through single receptors. Molecular Pharmacology, 62(451), 452–452. https://doi.org/10.1124/mol.62.3.451.
      Mao, L., Wei, W., & Chen, J. (2023). Biased regulation of glucocorticoid receptors signaling. Biomedicine & Pharmacotherapy, 165, 115145. https://doi.org/10.1016/j.biopha.2023.115145.
      Matthees, E. S., Haider, R. S., Hoffmann, C., & Drube, J. (2021). Differential regulation of GPCRs—Are GRK expression levels the key? Frontiers in Cell and Development Biology, 9, 687489. https://doi.org/10.3389/fcell.2021.687489.
      Maudsley, J., Martin, B., Janssens, J., Etienne, H., Jushaj, A., Van Gastel, J., Willemsen, A., Chen, H., Gesty‐Palmer, D., & Luttrell, L. M. (2016). Informatic deconvolution of biased GPCR signaling mechanisms from in vivo pharmacological experimentation. Methods, 92, 51–63. https://doi.org/10.1016/j.ymeth.2015.05.013.
      McDonald, J. K., van der Westhuizen, E., Pham, V., Thompson, G., Felder, C. C., & Paul, S. M. (2022). Biased profile of xanomeline at the recombinant human m4 muscarinic acetylcholine receptor. ACS Chemical Neuroscience, 13, 1206–1218. https://doi.org/10.1021/acschemneuro.1c00827.
      Mende, F., Hundahl, C., Plouffe, B., Skov, L. J., Sivertsen, B., Madsen, A. N., Lückmann, M., Diep, T. A., Offermanns, S., Frimurer, T. M., Bouvier, M., & Holst, B. (2018). Translating biased signaling in the ghrelin receptor system into differential in vivo functions. Proceedings of the National Academy of Sciences, 115, E10255–E10264. https://doi.org/10.1073/pnas.1804003115.
      Morgan, P., Brown, D. G., Lennard, S., Anderton, M. J., Barrett, C. J., Eriksson, U., Fidock, M., Hamrén, B., Johnson, A., March, R. E., Matcham, J., Mettetal, J., Nicholls, D. J., Platz, S., Rees, S., Snowden, M. A., & Pangalos, M. N. (2018). Impact of a five‐dimensional framework on R&D productivity at AstraZeneca. Nature Reviews. Drug Discovery, 17, 167–181. https://doi.org/10.1038/nrd.2017.244.
      Morgan, P., Van Der Graaf, P. H., Arrowsmith, J., Feltner, D. E., Drummond, K. S., Wegner, C. D., & Street, S. D. A. (2012). Can the flow of medicines be improved? Fundamental pharmacokinetic and pharmacological principles toward improving Phase II survival. Drug Discovery Today, 17, 419–424. https://doi.org/10.1016/j.drudis.2011.12.020.
      Myslivecek, J. (2022). Multitargeting nature of muscarinic orthosteric agonists and antagonists. Frontiers in Physiology, 13, 974160. https://doi.org/10.3389/fphys.2022.974160.
      Namkung, Y., LeGouill, C., Kumar, S., Cao, Y., Teixeira, A., Lukasheva, V., Giubilaro, J., Simões, S. C., Longpré, J. M., Devost, D., Hébert, T. E., Piñeyro, G., Leduc, R., Costa‐Neto, C. M., Bouvier, M., & Laporte, S. A. (2018). Functional selectivity profiling of the angiotensin II type 1 receptor using pathway‐wide BRET signaling sensors. Science Signaling, 11, 559. https://doi.org/10.1126/scisignal.aat1631.
      Olsen, R. H. J., DiBerto, J. F., English, J. G., Glaudin, A. M., Krumm, B. E., Slocum, S. T., Che, T., Gavin, A. C., McCorvy, J. D., Roth, B. L., & Strachan, R. T. (2020). TRUPATH, an open‐source biosensor platform for interrogating the GPCR transducerome. Nature Chemical Biology, 16, 841–849. https://doi.org/10.1038/s41589-020-0535-8.
      Onaran, H. O., Ambrosio, C., Ugur, Ö., Madaras Koncz, E., Grò, M. C., Vezzi, V., Rajagopal, S., & Costa, T. (2017). Systematic errors in detecting biased agonism: Analysis of current methods and development of a new model‐free approach. Scientific Reports, 7, 44247. https://doi.org/10.1038/srep44247.
      Pang, P. S., Butler, J., Collins, S. P., Cotter, G., Davison, B. A., Ezekowitz, P., Filippatos, G., Levy, P. D., Metra, M., Ponikowski, P., Teerlink, J. R., Voors, A. A., Bharucha, D., Goin, K., Soergel, D. G., & Felker, G. M. (2017). Biased ligand of the angiotensin II type 1 receptor in patients with acute heart failure; a randomized, double‐blind, placebo‐controlled, phase IIB, dose ranging trial (BLAST‐AHF). European Heart Journal, 38, 2364–2373. https://doi.org/10.1093/eurheartj/ehx196.
      Park, J. C., Luebbers, A., Dao, M., Semeano, A., Nguyen, A. M., Papakonstantinou, M. P., Broselid, S., Yano, H., Martemyanov, K. A., & Garcia‐Marcos, M. (2023). Fine‐tuning GPCR‐mediated neuromodulation by biasing signaling through different G protein subunits. Molecular Cell, 83(14), 2540–2558.e12. https://doi.org/10.1016/j.molcel.2023.06.006.
      Pedersen, M. F., Wróbel, T. M., Märcher‐Rørsted, E., Pedersen, D. S., Møller, T. C., Gabriele, F., Pedersen, H., Matosiuk, D., Foster, S. R., Bouvier, M., & Bräuner‐Osborne, H. (2020). Biased agonism of clinically approved μ‐opioid receptor agonists and TRV130 is not controlled by binding and signaling kinetics. Neuropharmacology, 166, 107718. https://doi.org/10.1016/j.neuropharm.2019.107718.
      Peters, M. F., & Scott, C. W. (2009). Evaluating cellular impedance assays for detection of GPCR pleiotropic signaling and functional selectivity. Journal of Biomolecular Screening, 14, 246–255. https://doi.org/10.1177/1087057108330115.
      Pottie, E., Poulie, C. B. M., Simon, I. A., Harpsøe, K., D'Andrea, L., Komarov, I., Gloriam, D. E., Jensen, A. A., Kristensen, J. L., & Stove, C. P. (2023). Structure–activity assessment and in‐depth analysis of biased agonism in a set of phenylalkylamine 5‐HT2A receptor agonists. ACS Chemical Neuroscience, 14, 2727–2742. https://doi.org/10.1021/acschemneuro.3c00267.
      Raehal, K. M., & Bohn, L. M. (2011). The role of beta‐arrestin2 in the severity of antinociceptive tolerance and physical dependence induced by different opioid pain therapeutics. Neuropharmacology, 60, 58–65. https://doi.org/10.1016/j.neuropharm.2010.08.003.
      Raehal, K. M., Walker, J. K., & Bohn, L. M. (2005). Morphine side effects in β‐arrestin 2 knockout mice. The Journal of Pharmacology and Experimental Therapeutics, 314, 1195–1201. https://doi.org/10.1124/jpet.105.087254.
      Rajagopal, S., Ahn, S., Rominger, D. H., Gowen‐MacDonald, W., Lam, C. M., & Dewire, S. M. (2011). Quantifying ligand bias at seven‐transmembrane receptors. Molecular Pharmacology, 80, 367–377. https://doi.org/10.1124/mol.111.072801.
      Randakova, A., & Jakubic, J. (2021). Functionally selective and biased agonists for muscarinic receptor. Pharmacological Research, 169, 105641. https://doi.org/10.1016/j.phrs.2021.105641.
      Roth, B. L., & Chuang, D. M. (1987). Multiple mechanisms of serotonergic signal transduction. Life Sciences, 41, 1051–1064. https://doi.org/10.1016/0024-3205(87)90621-7.
      Sarma, P., Carino, C. M. C., Seetharama, D., Pandey, S., Dwivedi‐Agnihotri, H., Rui, X., Cao, Y., Kawakami, K., Kumari, P., Chen, Y. C., Luker, K. E., Yadav, P. N., Luker, G. D., Laporte, S. A., Chen, X., Inoue, A., & Shukla, A. K. (2023). Molecular insights into intrinsic transducer‐coupling bias in the CXCR4‐CXCR7 system. Nature Communications, 14, 4808. https://doi.org/10.1038/s41467-023-40482-9.
      Sengmany, K., Hellyer, S. D., Christopoulos, A., Lapinsky, D. J., Leach, K., & Gregory, K. J. (2020). Differential contribution of metabotropic glutamate receptor 5 common allosteric binding site residues to biased allosteric agonism. Biochemical Pharmacology, 177, 11401. https://doi.org/10.1016/j.bcp.2020.114011.
      Shukla, A. K., Westfield, G. H., Xiao, K., Reis, R. I., Huang, L.‐Y., Tripathi‐Shukla, P., Qian, J., Li, S., Blanc, A., Oleskie, A. N., Dosey, A. M., Su, M., Liang, C. R., Gu, L. L., Shan, J. M., Chen, X., Hanna, R., Choi, M., Yao, X. J., … Lefkowitz, R. J. (2014). Visualization of arrestin recruitment by a G‐protein‐coupled receptor. Nature, 512, 218–222. https://doi.org/10.1038/nature13430.
      Singleton, S., Baptista‐Hon, D. T., Edelsten, E., McCaughey, K. S., Camplisson, E., & Hales, T. G. (2021). TRV130 partial agonism and capacity to induce anti‐nociceptive tolerance revealed through reducing available μ‐opioid receptor number. British Journal of Pharmacology, 178, 1855–1868. https://doi.org/10.1111/bph.15409.
      Skerritt, J. H., & MacDonald, R. L. (1984). Benzodiazepine receptor ligand actions on responses, benzodiazepines, CL218872, zoplicone. European Journal of Pharmacology, 101, 127–134. https://doi.org/10.1016/0014-2999(84)90038-4.
      Soave, M., Kellam, B., Woolard, J., Briddon, S. J., & Hill, S. J. (2020). NanoBiT complementation to monitor agonist‐induced adenosine A1 receptor internalization. SLAS DISCOVERY: Advancing the Science of Drug Discovery, 25, 186–194.
      Sonoda, N., Imamura, T., Yoshizaki, T., Babendure, J. L., Lu, J. C., & Olefsky, J. M. (2008). Beta‐arrestin‐1 mediates glucagon‐like peptide‐1 signaling to insulin secretion in cultured pancreatic beta cells. Proceedings of the National Academy of Sciences, 105, 6614–6619. https://doi.org/10.1073/pnas.0710402105.
      Sugihara, S., & Burnett, J. C. (2017). BAST‐AHF: Insights into biased AT1 ligands and heart failure: Beginning of the end or end of the beginning? European Heart Journal, 38, 2374–2376. https://doi.org/10.1093/eurheartj/ehx276.
      Suomivuori, C. M., Latorraca, N. R., Wingler, L. M., Eismann, S., King, M. C., Kleinhenz, A. L. W., Skiba, M. A., Staus, D. P., Kruse, A. C., Lefkowitz, R. J., & Dror, R. O. (2020). Molecular mechanism of biased signaling in a prototypical G protein‐coupled receptor. Science, 367(6480), 881–887. https://doi.org/10.1126/science.aaz0326.
      Tschammer, N., Bollinger, S., Kenakin, T., & Gmeiner, P. (2011). Histidine 6.55 is a major determinant of ligand‐biased signaling in dopamine D receptor. Molecular Pharmacology, 79, 575–585. https://doi.org/10.1124/mol.110.068106.
      Urs, N. M., & Caron, M. G. (2014). The physiological relevance of functional selectivity in dopamine signalling. International Journal of Obesity Supplements, 4(Suppl 1), S5–S8. https://doi.org/10.1038/ijosup.2014.3.
      van der Westhuizen, E. T., Choy, K. H. C., Valant, C., McKenzie‐Nickson, S., Bradley, S. J., Tobin, A. B., Sexton, P. M., & Christopoulos, A. (2021). Fine tuning muscarinic acetylcholine receptor signaling through allostery and bias. Frontiers in Pharmacology, 11, 606656. https://doi.org/10.3389/fphar.2020.606656.
      Violin, J. D., Crombie, A. L., Soergel, D. G., & Lark, M. W. (2014). Biased ligands at G‐protein‐coupled receptors: Promise and progress. Trends in Pharmacological Sciences, 35, 308–316. https://doi.org/10.1016/j.tips.2014.04.007.
      Violin, J. D., Dewire, S. M., Barnes, W. G., & Lefkowitz, R. J. (2006). G protein‐coupled receptor kinase and beta‐arrestin‐mediated desensitization of the angiotensin II type1A receptor elucidated by diacylglycerol dynamics. The Journal of Biological Chemistry, 281, 36411–36419. https://doi.org/10.1074/jbc.M607956200.
      Violin, J. D., DeWire, S. M., Yamashita, D., Rominger, D. H., Nguyen, L., Schiller, K., Whalen, E. J., Gowen, M., & Lark, M. W. (2010). Selectively engaging β‐arrestins at the angiotensin II type 1 receptor reduces blood pressure and increases cardiac performance. Pharmacology and Experimental Therapeutics, 335, 572–579. https://doi.org/10.1124/jpet.110.173005.
      Violin, J. D., & Lefkowitz, R. J. (2007). β‐Arrestin‐biased ligands at seven‐transmembrane receptors. Trends in Pharmacological Sciences, 28, 416–422. https://doi.org/10.1016/j.tips.2007.06.006.
      Viscusi, E. R., Skobieranda, F., Soergel, D. G., Cook, E., Burt, D. A., & Singla, N. (2019). APOLLO‐1: A randomized placebo and active‐controlled phase III study investigating oliceridine (TRV130), a G protein biased ligand at the μ‐opioid receptor, for management of moderate‐to‐severe acute pain following bunionectomy. Journal of Pain Research, 12, 927–943. https://doi.org/10.2147/JPR.S171013.
      Vuckovic, Z., Wang, J., Pham, V., Mobbs, J. I., Belousoff, M. J., Bhattarai, A., Burger, W. A. C., Thompson, G., Yeasmin, M., Nawaratne, V., Leach, K., Van der Westhuizen, E. T., Khajehali, E., Liang, Y. L., Glukhova, A., Wootten, D., Lindsley, C. W., Tobin, A., Sexton, P., … Thal, D. M. (2023). Pharmacological hallmarks of allostery at the M4 muscarinic receptor elucidated through structure and dynamics. eLife, 12, e83477. https://doi.org/10.7554/eLife.83477.
      Wang, S., Peng, L., & Kim, K. M. (2023). Biased dopamine D2 receptors exhibit distinct intracellular trafficking properties and ERK activation in different subcellular domains. Biomolecules & Therapeutics, 10, 4062.
      Watson, C., Chen, G., Irving, P., Way, J., Chen, W. J., & Kenakin, T. (2000). The use of stimulus‐biased assay systems to detect agonist‐specific receptor active states: Implications for the trafficking of receptor stimulus by agonists. Molecular Pharmacology, 58, 1230–1238. https://doi.org/10.1124/mol.58.6.1230.
      Whistler, J. L., & von Zastrow, M. (1999). Dissociation of functional roles of dynamin in receptor‐mediated endocytosis and mitogenic signal transduction. The Journal of Biological Chemistry, 274, 24575–24578. https://doi.org/10.1074/jbc.274.35.24575.
      White, K. L., Scopton, A. P., Rives, M. L., Bikbulatov, R. V., Polepally, P. R., Brown, P. J., Kenakin, T., Javitch, J. A., Zjawiony, J. K., & Roth, B. L. (2014). Identification of novel functionally selective κ‐opioid receptor scaffolds. Molecular Pharmacology, 85, 83–90. https://doi.org/10.1124/mol.113.089649.
      Willard, F. S., Douros, J. D., Gabe, M. B., Showalter, A. D., Wainscott, D. B., Suter, T. M., Capozzi, M. E., Van der Velden, W. J. C., Stutsman, C., Cardona, G. R., Urva, S., Emmerson, P. J., Holst, J. J., D'Alessio, D. A., Coghlan, M. P., Rosenkilde, M. M., Campbell, J. E., & Sloop, K. W. (2020). Tirzepatide is an imbalanced and biased dual GIP and GLP‐1receptor agonist. JCI Insight, 5, e140532. https://doi.org/10.1172/jci.insight.140532.
      Wingler, L. M., Elgeti, M., Hilger, D., Latorraca, N. R., Lerch, M. T., Staus, D. P., Dror, R. O., Kobilka, B. K., Hubbell, W. L., & Lefkowitz, R. J. (2019). Angiotensin analogs with divergent bias stabilize distinct receptor conformations. Cell, 176(3), 468–478.e11. https://doi.org/10.1016/j.cell.2018.12.005.
      Wingler, L. M., Skiba, M. A., McMahon, C., Staus, D. P., Kleinhenz, A. L. W., Suomivuori, C. M., Latorraca, N. R., Dror, R. O., Lefkowitz, R. J., & Kruse, A. C. (2020). Angiotensin and biased analogs induce structurally distinct active conformations within a GPCR. Science, 367(6480), 888–892. https://doi.org/10.1126/science.aay9813.
      Wisler, J. W., DeWire, S. M., Whalen, E. J., Violin, J. D., Drake, M. T., Ahn, S., Shenoy, S. K., & Lefkowitz, R. J. (2007). A unique mechanism of β‐blocker action: Carvedilol stimulates β‐arrestin signaling. Proceedings of the National Academy of Sciences, 104, 16657–16662. https://doi.org/10.1073/pnas.0707936104.
      Yuliantie, E., Darbalaei, S., Dai, A., Zhao, P., Yang, D., Sexton, P. M., Wang, M. W., & Wootten, D. (2020). Pharmacological characterization of mono‐, dual‐ and tri‐peptidic agonists at GIP and GLP‐1 receptors. Biochemical Pharmacology, 177, 114001. https://doi.org/10.1016/j.bcp.2020.114001.
      Zhao, L. H., He, Q., Yuan, Q., Gu, Y., He, X., Shan, H., Li, J., Wang, K., Li, Y., Hu, W., & Wu, K. (2023). Conserved class B GPCR activation by a biased intracellular agonist. Nature, 621(7979), 635–641. https://doi.org/10.1038/s41586-023-0646.
      Zidar, D. A., Violin, J. D., Whalen, E. J., & Lefkowitz, R. J. (2009). Selective engagement of G protein receptor kinases (GRKs) encodes distinct functions of biased ligands. Proceedings of the National Academy of Sciences, 106, 9649–9654. https://doi.org/10.1073/pnas.0904361106.
    • Contributed Indexing:
      Keywords: biased signalling; drug discovery; receptor agonism
    • Accession Number:
      0 (Ligands)
    • Publication Date:
      Date Created: 20240301 Date Completed: 20240412 Latest Revision: 20240412
    • Publication Date:
      20240412
    • Accession Number:
      10.1111/bph.16335
    • Accession Number:
      38424747