Neural crest origin of sympathetic neurons at the dawn of vertebrates.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: MEDLINE
    • Publication Information:
      Publication: Basingstoke : Nature Publishing Group
      Original Publication: London, Macmillan Journals ltd.
    • Subject Terms:
    • Abstract:
      The neural crest is an embryonic stem cell population unique to vertebrates 1 whose expansion and diversification are thought to have promoted vertebrate evolution by enabling emergence of new cell types and structures such as jaws and peripheral ganglia 2 . Although jawless vertebrates have sensory ganglia, convention has it that trunk sympathetic chain ganglia arose only in jawed vertebrates 3-8 . Here, by contrast, we report the presence of trunk sympathetic neurons in the sea lamprey, Petromyzon marinus, an extant jawless vertebrate. These neurons arise from sympathoblasts near the dorsal aorta that undergo noradrenergic specification through a transcriptional program homologous to that described in gnathostomes. Lamprey sympathoblasts populate the extracardiac space and extend along the length of the trunk in bilateral streams, expressing the catecholamine biosynthetic pathway enzymes tyrosine hydroxylase and dopamine β-hydroxylase. CM-DiI lineage tracing analysis further confirmed that these cells derive from the trunk neural crest. RNA sequencing of isolated ammocoete trunk sympathoblasts revealed gene profiles characteristic of sympathetic neuron function. Our findings challenge the prevailing dogma that posits that sympathetic ganglia are a gnathostome innovation, instead suggesting that a late-developing rudimentary sympathetic nervous system may have been characteristic of the earliest vertebrates.
      (© 2024. The Author(s), under exclusive licence to Springer Nature Limited.)
    • References:
      Le Douarin, N. The Neural Crest (Cambridge Univ. Press, 1982).
      Martik, M. L. et al. Evolution of the new head by gradual acquisition of neural crest regulatory circuits. Nature 574, 675–678 (2019). (PMID: 31645763685858410.1038/s41586-019-1691-4)
      Botar, J. Evolution and general anatomy of the autonomic nervous system. Gegenbaurs Morphol. Jahrb. 120, 271–279 (1974). (PMID: 4851944)
      Burnstock, G. Evolution of the autonomic innervation of visceral and cardiovascular systems in vertebrates. Pharmacol. Rev. 21, 247–324 (1969). (PMID: 4311664)
      Haming, D. et al. Expression of sympathetic nervous system genes in lamprey suggests their recruitment for specification of a new vertebrate feature. PLoS ONE 6, e26543 (2011). (PMID: 22046306320314110.1371/journal.pone.0026543)
      Johnels, A. G. On the peripheral autonomic nervous system of the trunk region of Lampetra planeri. Acta Zool. 37, 251–286 (1956). (PMID: 10.1111/j.1463-6395.1956.tb00047.x)
      Nicol, J. C. Autonomic nervous systems in lower chordates. Biol. Rev. 27, 1–48 (1952). (PMID: 10.1111/j.1469-185X.1952.tb01361.x)
      Rovainen, C. M. Neurobiology of lampreys. Physiol. Rev. 59, 1007–1077 (1979). (PMID: 22700310.1152/physrev.1979.59.4.1007)
      Shu, D. G. et al. Head and backbone of the Early Cambrian vertebrate Haikouichthys. Nature 421, 526–529 (2003). (PMID: 1255689110.1038/nature01264)
      Green, S. A., Simoes-Costa, M. & Bronner, M. E. Evolution of vertebrates as viewed from the crest. Nature 520, 474–482 (2015). (PMID: 25903629510066610.1038/nature14436)
      Green, S. A. & Bronner, M. E. The lamprey: a jawless vertebrate model system for examining origin of the neural crest and other vertebrate traits. Differentiation 87, 44–51 (2014). (PMID: 24560767399583010.1016/j.diff.2014.02.001)
      Anderson, D. J. & Axel, R. A bipotential neuroendocrine precursor whose choice of cell fate is determined by NGF and glucocorticoids. Cell 47, 1079–1090 (1986). (PMID: 287774810.1016/0092-8674(86)90823-8)
      Anderson, D. J., Carnahan, J. F., Michelsohn, A. & Patterson, P. H. Antibody markers identify a common progenitor to sympathetic neurons and chromaffin cells in vivo and reveal the timing of commitment to neuronal differentiation in the sympathoadrenal lineage. J. Neurosci. 11, 3507–3519 (1991). (PMID: 1941094657553110.1523/JNEUROSCI.11-11-03507.1991)
      Shtukmaster, S. et al. Sympathetic neurons and chromaffin cells share a common progenitor in the neural crest in vivo. Neural Dev. 8, 12 (2013). (PMID: 23777568369394010.1186/1749-8104-8-12)
      Le Douarin, N. M. & Smith, J. Development of the peripheral nervous system from the neural crest. Annu. Rev. Cell Biol. 4, 375–404 (1988). (PMID: 305816210.1146/annurev.cb.04.110188.002111)
      Loring, J. F. & Erickson, C. A. Neural crest cell migratory pathways in the trunk of the chick embryo. Dev. Biol. 121, 220–236 (1987). (PMID: 355278810.1016/0012-1606(87)90154-0)
      Reissmann, E. et al. Involvement of bone morphogenetic protein-4 and bone morphogenetic protein-7 in the differentiation of the adrenergic phenotype in developing sympathetic neurons. Development 122, 2079–2088 (1996). (PMID: 868178910.1242/dev.122.7.2079)
      Schneider, C., Wicht, H., Enderich, J., Wegner, M. & Rohrer, H. Bone morphogenetic proteins are required in vivo for the generation of sympathetic neurons. Neuron 24, 861–870 (1999). (PMID: 1062494910.1016/S0896-6273(00)81033-8)
      Ernsberger, U., Reissmann, E., Mason, I. & Rohrer, H. The expression of dopamine beta-hydroxylase, tyrosine hydroxylase, and Phox2 transcription factors in sympathetic neurons: evidence for common regulation during noradrenergic induction and diverging regulation later in development. Mech. Dev. 92, 169–177 (2000). (PMID: 1072785610.1016/S0925-4773(99)00336-6)
      Furlan, A. et al. Multipotent peripheral glial cells generate neuroendocrine cells of the adrenal medulla. Science 357, eaal3753 (2017). (PMID: 28684471601303810.1126/science.aal3753)
      Kastriti, M. E., Kameneva, P. & Adameyko, I. Stem cells, evolutionary aspects and pathology of the adrenal medulla: A new developmental paradigm. Mol. Cell. Endocrinol. 518, 110998 (2020). (PMID: 3281858510.1016/j.mce.2020.110998)
      Augustinsson, K. B., Fange, R., Johnels, A. & Ostlund, E. Histological, physiological and biochemical studies on the heart of two cyclostomes, hagfish (Myxine) and lamprey (Lampetra). J. Physiol. 131, 257–276 (1956). (PMID: 13320333136342810.1113/jphysiol.1956.sp005461)
      Paiement, J. M. & McMillan, D. B. The extracardiac chromaffin cells of larval lampreys. Gen. Comp. Endocrinol. 27, 495–508 (1975). (PMID: 121869910.1016/0016-6480(75)90070-2)
      Butler, D. G. Structure and function of the adrenal gland of fishes. Am. Zool. 13, 839–879 (1973). (PMID: 10.1093/icb/13.3.839)
      Reid, S. G., Bernier, N. J. & Perry, S. F. The adrenergic stress response in fish: control of catecholamine storage and release. Comp. Biochem. Physiol. C 120, 1–27 (1998). (PMID: 9827012)
      Kirby, M. & Gilmore, S. A correlative histofluorescence and light microscopic study of the formation of the sympathetic trunks in chick embryos. Anat. Rec. 186, 437–449 (1976). (PMID: 99903710.1002/ar.1091860309)
      Kastriti, M. E. et al. Schwann cell Precursors generate the majority of chromaffin cells in Zuckerkandl organ and some sympathetic neurons in paraganglia. Front. Mol. Neurosci. 12, 6 (2019). (PMID: 30740044635568510.3389/fnmol.2019.00006)
      Thomsen, E. R. et al. Fixed single-cell transcriptomic characterization of human radial glial diversity. Nat. Methods 13, 87–93 (2016). (PMID: 2652423910.1038/nmeth.3629)
      Ernsberger, U., Kramer, M., Tsarovina, K., Deller, T. & Rohrer, H. Coordinate expression of pan-neuronal and functional signature genes in sympathetic neurons. Cell Tissue Res. 370, 227–241 (2017). (PMID: 2893678110.1007/s00441-017-2688-7)
      Friedman, S. & Kaufman, S. 3,4-Dihydroxyphenylethylamine beta-hydroxylase: a copper protein. J. Biol. Chem. 240, PC552–PC554 (1965). (PMID: 1425347510.1016/S0021-9258(18)97686-6)
      Beesley, P. W., Herrera-Molina, R., Smalla, K. H. & Seidenbecher, C. The neuroplastin adhesion molecules: key regulators of neuronal plasticity and synaptic function. J. Neurochem. 131, 268–283 (2014). (PMID: 2504054610.1111/jnc.12816)
      Poea-Guyon, S. et al. The V-ATPase membrane domain is a sensor of granular pH that controls the exocytotic machinery. J. Cell Biol. 203, 283–298 (2013). (PMID: 24165939381296610.1083/jcb.201303104)
      Coughlin, M. D., Boyer, D. M. & Black, I. B. Embryologic development of a mouse sympathetic ganglion in vivo and in vitro. Proc. Natl Acad. Sci. USA 74, 3438–3442 (1977). (PMID: 2062843159610.1073/pnas.74.8.3438)
      Kuntz, A. The development of the sympathetic nervous system in man. J. Comp. Neurol. 32, 173–229 (1920). (PMID: 10.1002/cne.900320204)
      An, M., Luo, R. & Henion, P. D. Differentiation and maturation of zebrafish dorsal root and sympathetic ganglion neurons. J. Comp. Neurol. 446, 267–275 (2002). (PMID: 1193294210.1002/cne.10214)
      Young, J. Z. Memoirs: The autonomic nervous system of Selachians. J. Cell Sci. 2, 571–624 (1933). (PMID: 10.1242/jcs.s2-75.300.571)
      Nicol, J. A. The autonomic nervous system of the chimaeroid fish Hydrolagus colliei. Q. J. Microsc. Sci. 91, 379–399 (1950). (PMID: 24540163)
      Colin Nicol, J. A. Autonomic nervous system of the ratfish. Nature 165, 854 (1950). (PMID: 1542348910.1038/165854b0)
      Romer, A. S. in Evolutionary Biology (eds Dobzhansky, T., Hecht, M.K. & Steere, W.C.) 121–156 (Springer, 1972).
      Young, J. Z. Memoirs: On the autonomic nervous system of the Teleostean fish Uranoscopus scaber. J. Cell Sci. 2, 491–536 (1931). (PMID: 10.1242/jcs.s2-74.295.491)
      Furlan, A. et al. Visceral motor neuron diversity delineates a cellular basis for nipple- and pilo-erection muscle control. Nat. Neurosci. 19, 1331–1340 (2016). (PMID: 2757100810.1038/nn.4376)
      Han, S. et al. Direct evidence for the role of neuropeptide Y in sympathetic nerve stimulation-induced vasoconstriction. Am. J. Physiol. 274, H290–H294 (1998). (PMID: 9458879)
      Brazeau, M. D. & Friedman, M. The origin and early phylogenetic history of jawed vertebrates. Nature 520, 490–497 (2015). (PMID: 25903631464827910.1038/nature14438)
      Gans, C. & Northcutt, R. G. Neural crest and the origin of vertebrates: a new head. Science 220, 268–273 (1983). (PMID: 1773289810.1126/science.220.4594.268)
      Eklov, P. & Svanback, R. Predation risk influences adaptive morphological variation in fish populations. Am. Nat. 167, 440–452 (2006). (PMID: 1667335110.1086/499544)
      Vinterstare, J. et al. Predation risk and the evolution of a vertebrate stress response: parallel evolution of stress reactivity and sexual dimorphism. J. Evol. Biol. 34, 1554–1567 (2021). (PMID: 3446401410.1111/jeb.13918)
      Charmandari, E., Tsigos, C. & Chrousos, G. Endocrinology of the stress response. Annu. Rev. Physiol. 67, 259–284 (2005). (PMID: 1570995910.1146/annurev.physiol.67.040403.120816)
      Pierre, J., Mahouche, M., Suderevskaya, E. I., Reperant, J. & Ward, R. Immunocytochemical localization of dopamine and its synthetic enzymes in the central nervous system of the lamprey Lampetra fluviatilis. J. Comp. Neurol. 380, 119–135 (1997). (PMID: 907308710.1002/(SICI)1096-9861(19970331)380:1<119::AID-CNE9>3.0.CO;2-3)
      Chen, E. Y. et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinform. 14, 128 (2013). (PMID: 10.1186/1471-2105-14-128)
      Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90–W97 (2016). (PMID: 27141961498792410.1093/nar/gkw377)
      Xie, Z. et al. Gene set knowledge discovery with Enrichr. Curr. Protoc. 1, e90 (2021). (PMID: 33780170815257510.1002/cpz1.90)
      Nikitina, N., Bronner-Fraser, M. & Sauka-Spengler, T. Culturing lamprey embryos. Cold Spring Harb. Protoc. 2009, prot5122 (2009). (PMID: 10.1101/pdb.prot5122)
      Tahara, Y. Normal stages of development in the lamprey, Lampetra reissued (Dybowski). Zool. Sci. 5, 109–118 (1988).
      Choi, H. M. et al. Programmable in situ amplification for multiplexed imaging of mRNA expression. Nat. Biotechnol. 28, 1208–1212 (2010). (PMID: 21037591305832210.1038/nbt.1692)
      Nikitina, N., Bronner-Fraser, M. & Sauka-Spengler, T. DiI cell labeling in lamprey embryos. Cold Spring Harb. Protoc. 2009, prot5124 (2009). (PMID: 10.1101/pdb.prot5124)
      Kim, K. M., Son, K. & Palmore, G. T. Neuron Image Analyzer: automated and accurate extraction of neuronal data from low quality images. Sci. Rep. 5, 17062 (2015). (PMID: 26593337465540610.1038/srep17062)
      Hempel, C. M., Sugino, K. & Nelson, S. B. A manual method for the purification of fluorescently labeled neurons from the mammalian brain. Nat. Protoc. 2, 2924–2929 (2007). (PMID: 1800762910.1038/nprot.2007.416)
      Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527 (2016). (PMID: 2704300210.1038/nbt.3519)
      Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014). (PMID: 25516281430204910.1186/s13059-014-0550-8)
    • Accession Number:
      EC 1.14.16.2 (Tyrosine 3-Monooxygenase)
      EC 1.14.17.1 (Dopamine beta-Hydroxylase)
      X4W3ENH1CV (Norepinephrine)
    • Publication Date:
      Date Created: 20240417 Date Completed: 20240501 Latest Revision: 20240502
    • Publication Date:
      20240503
    • Accession Number:
      10.1038/s41586-024-07297-0
    • Accession Number:
      38632395