The C-terminus of the prototypical M2 muscarinic receptor localizes to the mitochondria and regulates cell respiration under stress conditions.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Public Library of Science Country of Publication: United States NLM ID: 101183755 Publication Model: eCollection Cited Medium: Internet ISSN: 1545-7885 (Electronic) Linking ISSN: 15449173 NLM ISO Abbreviation: PLoS Biol Subsets: MEDLINE
    • Publication Information:
      Original Publication: San Francisco, CA : Public Library of Science, [2003]-
    • Subject Terms:
    • Abstract:
      Muscarinic acetylcholine receptors are prototypical G protein-coupled receptors (GPCRs), members of a large family of 7 transmembrane receptors mediating a wide variety of extracellular signals. We show here, in cultured cells and in a murine model, that the carboxyl terminal fragment of the muscarinic M2 receptor, comprising the transmembrane regions 6 and 7 (M2tail), is expressed by virtue of an internal ribosome entry site localized in the third intracellular loop. Single-cell imaging and import in isolated yeast mitochondria reveals that M2tail, whose expression is up-regulated in cells undergoing integrated stress response, does not follow the normal route to the plasma membrane, but is almost exclusively sorted to the mitochondria inner membrane: here, it controls oxygen consumption, cell proliferation, and the formation of reactive oxygen species (ROS) by reducing oxidative phosphorylation. Crispr/Cas9 editing of the key methionine where cap-independent translation begins in human-induced pluripotent stem cells (hiPSCs), reveals the physiological role of this process in influencing cell proliferation and oxygen consumption at the endogenous level. The expression of the C-terminal domain of a GPCR, capable of regulating mitochondrial function, constitutes a hitherto unknown mechanism notably unrelated to its canonical signaling function as a GPCR at the plasma membrane. This work thus highlights a potential novel mechanism that cells may use for controlling their metabolism under variable environmental conditions, notably as a negative regulator of cell respiration.
      Competing Interests: The authors have declared that no competing interests exist.
      (Copyright: © 2024 Fasciani et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
    • References:
      Curr Opin Struct Biol. 2022 Apr;73:102333. (PMID: 35176591)
      Nat Commun. 2016 Mar 18;7:11046. (PMID: 26988139)
      Science. 1987 Jul 31;237(4814):527-32. (PMID: 3037705)
      Nucleic Acids Res. 2018 Jan 4;46(D1):D440-D446. (PMID: 29155946)
      Nat Protoc. 2021 Mar;16(3):1419-1451. (PMID: 33514946)
      J Cell Sci. 1992 Nov;103 ( Pt 3):857-62. (PMID: 1478975)
      FEBS Lett. 1993 Mar 15;319(1-2):195-200. (PMID: 8454056)
      J Biol Chem. 1995 Sep 1;270(35):20636-42. (PMID: 7657643)
      Trends Pharmacol Sci. 2010 May;31(5):221-8. (PMID: 20303186)
      Curr Protoc Stem Cell Biol. 2020 Dec;55(1):e123. (PMID: 32956572)
      Neural Regen Res. 2013 Jul 25;8(21):2003-14. (PMID: 25206509)
      J Mol Biol. 2002 Dec 13;324(5):889-902. (PMID: 12470947)
      RNA. 1995 Dec;1(10):985-1000. (PMID: 8595564)
      Mol Cell Biol. 1996 Dec;16(12):6870-8. (PMID: 8943342)
      PLoS One. 2016 Jan 22;11(1):e0146789. (PMID: 26799488)
      Nature. 2020 Nov;587(7835):650-656. (PMID: 33149304)
      Traffic. 2019 Feb;20(2):121-129. (PMID: 30536564)
      Cytoskeleton (Hoboken). 2012 Oct;69(10):810-8. (PMID: 22888021)
      Biochim Biophys Acta. 2009 Sep-Oct;1789(9-10):518-28. (PMID: 19631772)
      Data Brief. 2020 Jan 02;29:105063. (PMID: 32055652)
      Stem Cell Res. 2020 Oct;48:101998. (PMID: 32979629)
      Stem Cells Dev. 2009 Jan-Feb;18(1):103-12. (PMID: 18393628)
      Biochim Biophys Acta. 2007 Apr;1768(4):853-70. (PMID: 17074298)
      J Cell Biol. 2013 Aug 5;202(3):453-62. (PMID: 23897891)
      Genes Dev. 2001 Jul 1;15(13):1593-612. (PMID: 11445534)
      Br J Pharmacol. 2018 Nov;175(21):4026-4035. (PMID: 28872669)
      FEBS J. 2017 Jun;284(11):1726-1737. (PMID: 28391610)
      Proc Natl Acad Sci U S A. 2017 Sep 19;114(38):E7997-E8006. (PMID: 28874589)
      Cell. 2019 Jun 27;178(1):242-260.e29. (PMID: 31155234)
      Nat Rev Drug Discov. 2014 Jul;13(7):549-60. (PMID: 24903776)
      Biochem Soc Trans. 2016 Apr 15;44(2):589-94. (PMID: 27068974)
      Clin Exp Pharmacol Physiol. 2018 Nov;45(11):1198-1205. (PMID: 29920752)
      Nat Neurosci. 2012 Mar 04;15(4):558-64. (PMID: 22388959)
      Biochemistry. 1992 Jul 7;31(26):6144-51. (PMID: 1627558)
      Cell Logist. 2016 Oct 13;6(4):e1247939. (PMID: 28042516)
      Nat Rev Mol Cell Biol. 2005 Apr;6(4):318-27. (PMID: 15803138)
      Nucleic Acids Res. 2012 Jan;40(2):541-52. (PMID: 21917851)
      Cell Rep. 2017 Mar 14;18(11):2729-2741. (PMID: 28297675)
      J Biol Chem. 2004 Feb 27;279(9):7476-86. (PMID: 14660647)
      Cold Spring Harb Perspect Biol. 2019 May 1;11(5):. (PMID: 30037969)
      J Microsc. 1993 Mar;169(3):375-382. (PMID: 33930978)
    • Accession Number:
      0 (Reactive Oxygen Species)
      0 (Receptor, Muscarinic M2)
      0 (CHRM2 protein, human)
    • Publication Date:
      Date Created: 20240429 Date Completed: 20240514 Latest Revision: 20240603
    • Publication Date:
      20240604
    • Accession Number:
      PMC11093360
    • Accession Number:
      10.1371/journal.pbio.3002582
    • Accession Number:
      38683874