Lense-Thirring precession after a supermassive black hole disrupts a star.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: PubMed not MEDLINE; MEDLINE
    • Publication Information:
      Publication: Basingstoke : Nature Publishing Group
      Original Publication: London, Macmillan Journals ltd.
    • Abstract:
      An accretion disk formed around a supermassive black hole after it disrupts a star is expected to be initially misaligned with respect to the equatorial plane of the black hole. This misalignment induces relativistic torques (the Lense-Thirring effect) on the disk, causing the disk to precess at early times, whereas at late times the disk aligns with the black hole and precession terminates 1,2 . Here we report, using high-cadence X-ray monitoring observations of a tidal disruption event (TDE), the discovery of strong, quasi-periodic X-ray flux and temperature modulations. These X-ray modulations are separated by roughly 15 days and persist for about 130 days during the early phase of the TDE. Lense-Thirring precession of the accretion flow can produce this X-ray variability, but other physical mechanisms, such as the radiation-pressure instability 3,4 , cannot be ruled out. Assuming typical TDE parameters, that is, a solar-like star with the resulting disk extending at most to the so-called circularization radius, and that the disk precesses as a rigid body, we constrain the disrupting dimensionless spin parameter of the black hole to be 0.05 ≲ ∣a∣ ≲ 0.5.
      (© 2024. The Author(s).)
    • References:
      Stone, N. & Loeb, A. Observing Lense–Thirring precession in tidal disruption flares. Phys. Rev. Lett. 108, 061302 (2012). (PMID: 2240105210.1103/PhysRevLett.108.061302)
      Franchini, A., Lodato, G. & Facchini, S. Lense–Thirring precession around supermassive black holes during tidal disruption events. Mon. Not. R. Astron. Soc. 455, 1946–1956 (2016). (PMID: 10.1093/mnras/stv2417)
      Lightman, A. P. & Eardley, D. M. Black holes in binary systems: instability of disk accretion. Astrophys. J. Lett. 187, L1 (1974). (PMID: 10.1086/181377)
      Janiuk, A., Czerny, B. & Siemiginowska, A. Radiation pressure instability as a variability mechanism in the microquasar GRS 1915+105. Astrophys. J. Lett. 542, L33–L36 (2000). (PMID: 10.1086/312911)
      Gezari, S. et al. AT2020ocn/ZTF18aakelin: tidal disruption event that is brightening in the X-rays. The Astronomer’s Telegram 13859, 1 (2020).
      Hammerstein, E. et al. The final season reimagined: 30 tidal disruption events from the ZTF-I survey. Astrophys. J. 942, 9 (2023). (PMID: 10.3847/1538-4357/aca283)
      Scargle, J. D. Studies in astronomical time series analysis. II. Statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J. 263, 835–853 (1982). (PMID: 10.1086/160554)
      Horne, J. H. & Baliunas, S. L. A prescription for period analysis of unevenly sampled time series. Astrophys. J. 302, 757 (1986). (PMID: 10.1086/164037)
      McClintock, J. E. & Remillard, R. A. in Compact Stellar X-ray Sources Vol. 39 (eds Lewin, W. et al.) 157–213 (Cambridge Univ. Press, 2006).
      Cufari, M., Coughlin, E. R. & Nixon, C. J. Using the Hills mechanism to generate repeating partial tidal disruption events and ASASSN-14ko. Astrophys. J. Lett. 929, L20 (2022). (PMID: 10.3847/2041-8213/ac6021)
      Bonnerot, C. & Lu, W. Simulating disc formation in tidal disruption events. Mon. Not. R. Astron. Soc. 495, 1374–1391 (2020). (PMID: 10.1093/mnras/staa1246)
      Andalman, Z. L., Liska, M. T. P., Tchekhovskoy, A., Coughlin, E. R. & Stone, N. Tidal disruption discs formed and fed by stream-stream and stream-disc interactions in global GRHD simulations. Mon. Not. R. Astron. Soc. 510, 1627–1648 (2022). (PMID: 10.1093/mnras/stab3444)
      Ingram, A. & Done, C. A physical interpretation of the variability power spectral components in accreting neutron stars. Mon. Not. R. Astron. Soc. 405, 2447–2452 (2010).
      Motta, S. E., Belloni, T. M., Stella, L., Muñoz-Darias, T. & Fender, R. Precise mass and spin measurements for a stellar-mass black hole through X-ray timing: the case of GRO J1655-40. Mon. Not. R. Astron. Soc. 437, 2554–2565 (2014). (PMID: 10.1093/mnras/stt2068)
      Nixon, C. & Salvesen, G. A physical model for state transitions in black hole X-ray binaries. Mon. Not. R. Astron. Soc. 437, 3994–3999 (2014). (PMID: 10.1093/mnras/stt2215)
      Belloni, T., Méndez, M., King, A. R., van der Klis, M. & van Paradijs, J. An Unstable Central Disk in the Superluminal Black Hole X-Ray Binary GRS 1915+105. Astrophys. J. Lett. 479, L145–L148 (1997). (PMID: 10.1086/310595)
      Muno, M. P., Morgan, E. H. & Remillard, R. A. Quasi-periodic oscillations and spectral states in GRS 1915+105. Astrophys. J. 527, 321–340 (1999). (PMID: 10.1086/308063)
      Altamirano, D. et al. The faint “heartbeats” of IGR J17091-3624: an exceptional black hole candidate. Astrophys. J. Lett. 742, L17 (2011). (PMID: 10.1088/2041-8205/742/2/L17)
      Belloni, T., Méndez, M., King, A. R., van der Klis, M. & van Paradijs, J. A unified model for the spectral variability in GRS 1915+105. Astrophys. J. Lett. 488, L109–L112 (1997). (PMID: 10.1086/310944)
      Raj, A. & Nixon, C. J. Disk tearing: implications for black hole accretion and AGN variability. Astrophys. J. 909, 82 (2021). (PMID: 10.3847/1538-4357/abdc25)
      Martin, R. G., Nixon, C. J., Pringle, J. E. & Livio, M. On the physical nature of accretion disc viscosity. New Astron. 70, 7–11 (2019). (PMID: 10.1016/j.newast.2019.01.001)
      Papaloizou, J. C. B. & Pringle, J. E. The time-dependence of non-planar accretion discs. Mon. Not. R. Astron. Soc. 202, 1181–1194 (1983). (PMID: 10.1093/mnras/202.4.1181)
      Nixon, C., King, A., Price, D. & Frank, J. Tearing up the disk: how black holes accrete. Astrophys. J. Lett. 757, L24 (2012). (PMID: 10.1088/2041-8205/757/2/L24)
      Wu, S., Coughlin, E. R. & Nixon, C. Super-Eddington accretion in tidal disruption events: the impactof realistic fallback rates on accretion rates. Mon. Not. R. Astron. Soc. 478, 3016–3024 (2018). (PMID: 10.1093/mnras/sty971)
      Ulmer, A. Flares from the tidal disruption of stars by massive black holes. Astrophys. J. 514, 180–187 (1999). (PMID: 10.1086/306909)
      Guillochon, J. & Ramirez-Ruiz, E. Hydrodynamical simulations to determine the feeding rate of black holes by the tidal disruption of stars: the importance of the impact parameter and stellar structure. Astrophys. J. 767, 25 (2013). (PMID: 10.1088/0004-637X/767/1/25)
      Roth, N., Kasen, D., Guillochon, J. & Ramirez-Ruiz, E. The X-Ray through optical fluxes and line strengths of tidal disruption events. Astrophys. J. 827, 3 (2016). (PMID: 10.3847/0004-637X/827/1/3)
      Auchettl, K., Guillochon, J. & Ramirez-Ruiz, E. New physical insights about tidal disruption events from a comprehensive observational inventory at X-ray wavelengths. Astrophys. J. 838, 149 (2017). (PMID: 10.3847/1538-4357/aa633b)
      Guolo, M. et al. A systematic analysis of the X-ray emission in optically selected tidal disruption events: observational evidence for the unification of the optically and X-ray selected populations. Preprint at arxiv.org/abs/2308.13019 (2023).
      Bricman, K. & Gomboc, A. The prospects of observing tidal disruption events with the Large Synoptic Survey Telescope. Astrophys. J. 890, 73 (2020). (PMID: 10.3847/1538-4357/ab6989)
      Bellm, E. C. et al. The Zwicky Transient Facility: system overview, performance, and first results. Publ. Astron. Soc. Pac. 131, 018002 (2019). (PMID: 10.1088/1538-3873/aaecbe)
      Planck Collaboration. et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020). (PMID: 10.1051/0004-6361/201833910)
      Wright, E. L. A cosmology calculator for the world wide web. Publ. Astron. Soc. Pac. 118, 1711–1715 (2006). (PMID: 10.1086/510102)
      Pasham, D. R. et al. The birth of a relativistic jet following the disruption of a star by a cosmological black hole. Nat. Astron. 7, 88–104 (2023). (PMID: 10.1038/s41550-022-01820-x)
      Pasham, D. R. et al. Evidence for a compact object in the aftermath of the extragalactic transient AT2018cow. Nat. Astron. 6, 249–258 (2021). (PMID: 10.1038/s41550-021-01524-8)
      Remillard, R. A. et al. An empirical background model for the NICER X-ray timing instrument. Astron. J. 163, 130 (2022). (PMID: 10.3847/1538-3881/ac4ae6)
      Kaastra, J. S. & Bleeker, J. A. M. Optimal binning of X-ray spectra and response matrix design. Astron. Astrophys. 587, A151 (2016). (PMID: 10.1051/0004-6361/201527395)
      Arnaud, K. A. in Astronomical Data Analysis Software and Systems V Vol. 101 (eds Jacoby, G. H. & Barnes, J.) 17–20 (Astrophysics Society of the Pacific, 1996).
      Frederick, S. ZTF/iPTF Transient Discovery Report for 2020-07-07. Report No. 2020-2059 (Transient Name Server, 2020).
      Masci, F. J. et al. The Zwicky Transient Facility: data processing, products, and archive. Publ. Astron. Soc. Pac. 131, 018003 (2019). (PMID: 10.1088/1538-3873/aae8ac)
      Schlafly, E. F. & Finkbeiner, D. P. Measuring reddening with Sloan Digital Sky Survey stellar spectra and recalibrating SFD. Astrophys. J. 737, 103 (2011). (PMID: 10.1088/0004-637X/737/2/103)
      Roming, P. W. A. et al. The Swift Ultra-Violet/Optical Telescope. Space Sci. Rev. 120, 95–142 (2005). (PMID: 10.1007/s11214-005-5095-4)
      Cappellari, M. Improving the full spectrum fitting method: accurate convolution with Gauss-Hermite functions. Mon. Not. R. Astron. Soc. 466, 798–811 (2017). (PMID: 10.1093/mnras/stw3020)
      Falcón-Barroso, J. et al. An updated MILES stellar library and stellar population models. Astron. Astrophys. 532, A95 (2011). (PMID: 10.1051/0004-6361/201116842)
      Wevers, T. et al. Black hole masses of tidal disruption event host galaxies. Mon. Not. R. Astron. Soc. 471, 1694–1708 (2017). (PMID: 10.1093/mnras/stx1703)
      McConnell, N. J. & Ma, C.-P. Revisiting the scaling relations of black hole masses and host galaxy properties. Astrophys. J. 764, 184 (2013). (PMID: 10.1088/0004-637X/764/2/184)
      Mishra, B., Kluźniak, W. & Fragile, P. C. Relativistic, axisymmetric, viscous, radiation hydrodynamic simulations of geometrically thin discs. II. Disc variability. Mon. Not. R. Astron. Soc. 497, 1066–1079 (2020). (PMID: 10.1093/mnras/staa1848)
      Markowitz, A. et al. X-ray fluctuation power spectral densities of Seyfert 1 galaxies. Astrophys. J. 593, 96–114 (2003). (PMID: 10.1086/375330)
      Uttley, P., McHardy, I. M. & Papadakis, I. E. Measuring the broad-band power spectra of active galactic nuclei with RXTE. Mon. Not. R. Astron. Soc. 332, 231–250 (2002). (PMID: 10.1046/j.1365-8711.2002.05298.x)
      Timmer, J. & Koenig, M. On generating power law noise. Astron. Astrophys. 300, 707–710 (1995).
      Dadina, M. Seyfert galaxies in the local Universe (z ≤ 0.1): the average X-ray spectrum as seen by BeppoSAX. Astron. Astrophys. 485, 417–424 (2008). (PMID: 10.1051/0004-6361:20077569)
      Miniutti, G. et al. Nine-hour X-ray quasi-periodic eruptions from a low-mass black hole galactic nucleus. Nature 573, 381–384 (2019). (PMID: 3151169610.1038/s41586-019-1556-x)
      Liu, X.-L., Dou, L.-M., Chen, J.-H. & Shen, R.-F. The UV/Optical peak and X-ray brightening in TDE candidate AT 2019azh: a case of stream-stream collision and delayed accretion. Astrophys. J. 925, 67 (2022). (PMID: 10.3847/1538-4357/ac33a9)
      Shakura, N. I. & Sunyaev, R. A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 24, 337–355 (1973).
      Novikov, I. D. & Thorne, K. S. in Black Holes, Les Astres Occulus 343–450 (Gordon and Breach, 1973).
      Sądowski, A., Tejeda, E., Gafton, E., Rosswog, S. & Abarca, D. Magnetohydrodynamical simulations of a deep tidal disruption in general relativity. Mon. Not. R. Astron. Soc. 458, 4250–4268 (2016). (PMID: 10.1093/mnras/stw589)
      Sniegowska, M., Czerny, B., Bon, E. & Bon, N. Possible mechanism for multiple changing-look phenomena in active galactic nuclei. Astron. Astrophys. 641, A167 (2020). (PMID: 10.1051/0004-6361/202038575)
      Śniegowska, M., Grzȩdzielski, M., Czerny, B. & Janiuk, A. Modified models of radiation pressure instability applied to 10, 10 5 , and 10 7 M accreting black holes. Astron. Astrophys. 672, A19 (2023). (PMID: 10.1051/0004-6361/202243828)
      Kaur, K., Stone, N. C. & Gilbaum, S. Magnetically dominated discs in tidal disruption events and quasi-periodic eruptions. Mon. Not. R. Astron. Soc. 524, 1269–1290 (2023). (PMID: 10.1093/mnras/stad1894)
      Raj, A., Nixon, C. J. & Doğan, S. Disk tearing: numerical investigation of warped disk instability. Astrophys. J. 909, 81 (2021). (PMID: 10.3847/1538-4357/abdc24)
      Ogilvie, G. I. An alpha theory of time-dependent warped accretion discs. Mon. Not. R. Astron. Soc. 317, 607–622 (2000). (PMID: 10.1046/j.1365-8711.2000.03654.x)
      Doğan, S., Nixon, C. J., King, A. R. & Pringle, J. E. Instability of warped discs. Mon. Not. R. Astron. Soc. 476, 1519–1531 (2018). (PMID: 10.1093/mnras/sty155)
      Doğan, S. & Nixon, C. J. Instability of non-Keplerian warped discs. Mon. Not. R. Astron. Soc. 495, 1148–1157 (2020). (PMID: 10.1093/mnras/staa1239)
      Liska, M. et al. Disc tearing and Bardeen–Petterson alignment in GRMHD simulations of highly tilted thin accretion discs. Mon. Not. R. Astron. Soc. 507, 983–990 (2021). (PMID: 10.1093/mnras/staa099)
      Drewes, N. C. & Nixon, C. J. On the dynamics of low-viscosity warped disks around black holes. Astrophys. J. 922, 243 (2021). (PMID: 10.3847/1538-4357/ac2609)
      Kraus, S. et al. A triple-star system with a misaligned and warped circumstellar disk shaped by disk tearing. Science 369, 1233–1238 (2020). (PMID: 3288386610.1126/science.aba4633)
      Nixon, C., King, A. & Price, D. Tearing up the disc: misaligned accretion on to a binary. Mon. Not. R. Astron. Soc. 434, 1946–1954 (2013). (PMID: 10.1093/mnras/stt1136)
      Strubbe, L. E. & Quataert, E. Optical flares from the tidal disruption of stars by massive black holes. Mon. Not. R. Astron. Soc. 400, 2070–2084 (2009). (PMID: 10.1111/j.1365-2966.2009.15599.x)
      Pasham, D. Data to reproduce Figs 1 and 3 of paper titled “Lense-Thirring Precession after a Supermassive Black Hole Disrupts a Star”. Zenodo https://doi.org/10.5281/zenodo.10062825 (2023).
      Pasham, D. XMM spectra of AT2020ocn. Zenodo https://doi.org/10.5281/zenodo.8252931 (2023).
      Pasham, D. NICER spectra of AT2020ocn. Zenodo https://doi.org/10.5281/zenodo.8253537 (2024).
    • Publication Date:
      Date Created: 20240522 Date Completed: 20240612 Latest Revision: 20240615
    • Publication Date:
      20240616
    • Accession Number:
      PMC11168925
    • Accession Number:
      10.1038/s41586-024-07433-w
    • Accession Number:
      38778113