Comparison of SMS-EPI and 3D-EPI at 7T in an fMRI localizer study with matched spatiotemporal resolution and homogenized excitation profiles.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Public Library of Science Country of Publication: United States NLM ID: 101285081 Publication Model: eCollection Cited Medium: Internet ISSN: 1932-6203 (Electronic) Linking ISSN: 19326203 NLM ISO Abbreviation: PLoS One Subsets: MEDLINE
    • Publication Information:
      Original Publication: San Francisco, CA : Public Library of Science
    • Subject Terms:
    • Abstract:
      The simultaneous multi-slice EPI (SMS-EPI, a.k.a. MB-EPI) sequence has met immense popularity recently in functional neuroimaging. A still less common alternative is the use of 3D-EPI, which offers similar acceleration capabilities. The aim of this work was to compare the SMS-EPI and the 3D-EPI sequences in terms of sampling strategies for the detection of task-evoked activations at 7T using detection theory. To this end, the spatial and temporal resolutions of the sequences were matched (1.6 mm isotropic resolution, TR = 1200 ms) and their excitation profiles were homogenized by means of calibration-free parallel-transmission (Universal Pulses). We used a fast-event "localizer" paradigm of 5:20 min in order to probe sensorimotor functions (visual, auditory and motor tasks) as well as higher level functions (language comprehension, mental calculation), where results from a previous large-scale study at 3T (N = 81) served as ground-truth reference for the brain areas implicated in each cognitive function. In the current study, ten subjects were scanned while their activation maps were generated for each cognitive function with the GLM analysis. The SMS-EPI and 3D-EPI sequences were compared in terms of raw tSNR, t-score testing for the mean signal, activation strength and accuracy of the robust sensorimotor functions. To this end, the sensitivity and specificity of these contrasts were computed by comparing their activation maps to the reference brain areas obtained in the 3T study. Estimated flip angle distributions in the brain reported a normalized root mean square deviation from the target value below 10% for both sequences. The analysis of the t-score testing for the mean signal revealed temporal noise correlations, suggesting the use of this metric instead of the traditional tSNR for testing fMRI sequences. The SMS-EPI and 3D-EPI thereby yielded similar performance from a detection theory perspective.
      Competing Interests: The authors have declared that no competing interests exist.
    • References:
      Magn Reson Med. 2017 Dec;78(6):2194-2202. (PMID: 28112827)
      Magn Reson Med. 2013 Jun;69(6):1657-64. (PMID: 22821858)
      Magn Reson Med. 2002 Jun;47(6):1202-10. (PMID: 12111967)
      Magn Reson Med. 2012 Feb;67(2):344-52. (PMID: 21656557)
      Neuroimage. 2016 Jan 1;124(Pt A):32-42. (PMID: 26341029)
      Neuroimage. 2005 May 15;26(1):243-50. (PMID: 15862224)
      NMR Biomed. 2016 Sep;29(9):1145-61. (PMID: 25989904)
      Magn Reson Med. 2003 Jan;49(1):144-50. (PMID: 12509830)
      Magn Reson Med. 2005 Feb;53(2):434-45. (PMID: 15678527)
      Neuroimage. 2010 May 15;51(1):261-6. (PMID: 20139009)
      Magn Reson Med. 2018 Jul;80(1):53-65. (PMID: 29193250)
      Magn Reson Med. 2016 Nov;76(5):1517-1523. (PMID: 26612608)
      PLoS One. 2010 Dec 20;5(12):e15710. (PMID: 21187930)
      Neuroimage. 2015 Jan 1;104:452-9. (PMID: 25462696)
      Neuroimage. 2018 Feb 1;166:152-166. (PMID: 29066396)
      Neuroimage. 2007 Aug 1;37(1):90-101. (PMID: 17560126)
      Magn Reson Med. 2006 Apr;55(4):719-24. (PMID: 16526012)
      IEEE Trans Med Imaging. 2001 Jan;20(1):45-57. (PMID: 11293691)
      J Magn Reson Imaging. 2001 Feb;13(2):313-7. (PMID: 11169840)
      Magn Reson Med. 2010 May;63(5):1144-53. (PMID: 20432285)
      Neuroimage. 2019 Jul 15;195:1-10. (PMID: 30923027)
      Magn Reson Med. 2012 Jan;67(1):72-80. (PMID: 21590724)
      Neuroimage. 2003 Oct;20(2):870-88. (PMID: 14568458)
      Neuroimage. 2019 Mar;188:807-820. (PMID: 30735828)
      Magn Reson Med. 2008 Dec;60(6):1422-32. (PMID: 19025908)
      Magn Reson Med. 2000 Jul;44(1):162-7. (PMID: 10893535)
      Magn Reson Med. 2012 May;67(5):1210-24. (PMID: 21858868)
      Neuroimage. 2017 Jul 1;154:23-32. (PMID: 27894889)
      J Magn Reson. 2015 Dec;261:181-9. (PMID: 26619073)
      Neuroimage. 2018 Aug 1;176:404-416. (PMID: 29738911)
      Neuroimage. 2017 Dec;163:81-92. (PMID: 28923276)
      Neuroimage. 2018 May 15;172:538-553. (PMID: 29408461)
      Magn Reson Med. 2014 Jul;72(1):93-102. (PMID: 23963964)
      Magn Reson Med. 2011 Nov;66(5):1468-76. (PMID: 21604294)
      Magn Reson Med. 1995 Jul;34(1):57-64. (PMID: 7674899)
      Neuroimage. 2018 Jan 1;164:131-143. (PMID: 27867088)
      Magn Reson Imaging. 2013 Feb;31(2):212-20. (PMID: 22921734)
      Magn Reson Med. 2006 Mar;55(3):549-56. (PMID: 16408271)
      BMC Neurosci. 2007 Oct 31;8:91. (PMID: 17973998)
      Magn Reson Med. 2016 Jun;75(6):2350-61. (PMID: 26173572)
      Magn Reson Med. 2001 Oct;46(4):631-7. (PMID: 11590638)
      Neuroimage. 2019 Jan 1;184:396-408. (PMID: 30237033)
      Magn Reson Med. 2017 Sep;78(3):888-896. (PMID: 28686788)
      Magn Reson Med. 2017 Feb;77(2):635-643. (PMID: 26888654)
      Hum Brain Mapp. 2018 Oct;39(10):3884-3897. (PMID: 29885101)
      Neuroimage. 2013 Oct 15;80:80-104. (PMID: 23702417)
      Magn Reson Med. 2016 Dec;76(6):1805-1813. (PMID: 26749161)
      PLoS One. 2017 Aug 21;12(8):e0183562. (PMID: 28827835)
    • Publication Date:
      Date Created: 20191122 Date Completed: 20200323 Latest Revision: 20200323
    • Publication Date:
      20231215
    • Accession Number:
      PMC6872176
    • Accession Number:
      10.1371/journal.pone.0225286
    • Accession Number:
      31751410