Assessing soil properties and chemical quality indices under trees outside forests (TOFs) in temperate Himalayan region.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer Country of Publication: Netherlands NLM ID: 8508350 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-2959 (Electronic) Linking ISSN: 01676369 NLM ISO Abbreviation: Environ Monit Assess Subsets: MEDLINE
    • Publication Information:
      Publication: 1998- : Dordrecht : Springer
      Original Publication: Dordrecht, Holland ; Boston : D. Reidel Pub. Co., c1981-
    • Subject Terms:
    • Abstract:
      Trees outside forests (TOFs) have assumed importance in view of its potential to mitigate CO 2 under different carbon pools with soil as the prominent pool. The ability of any TOF practice to fix soil organic carbon (SOC) efficiently depends on its SOC build up and soil quality that varies across different strata within TOFs. Soil physico-chemical properties under six TOF practices (boundary plantation, roadside plantation, riverside plantation, horticulture, scattered patches with clumpy plantation (SPCP), and woodlot) in central region of Kashmir valley were investigated to assess SOC content and soil quality. Additive soil quality index (ASQI) approach was used to assess soil quality using "lower or higher is better" criteria. Correlation analysis between soil variables was carried out to assess the relationships. The results showed that TOF soils in the region were sandy clay loam in texture with slightly acidic to alkaline pH and electrical conductivity within normal limits. Lowest bulk density (0.94 g cm -3 ) was found in SPCP and highest (1.38 g cm -3 ) in roadside plantation. Highest SOC %, available nitrogen (N), and available phosphorus (P) values were observed in SPCP and lowest in boundary plantation. Average available potassium (K) was observed highest in SPCP (333.04 kg ha -1 ) and lowest in riverside plantation (244.58 kg ha -1 ). Soil pH showed significant but negative correlations with SOC and other nutrients (N and P). A significant but perfect positive correlation was observed between SOC and available N. SOC content was found highest in SPCP (60.16 t ha -1 ) and lowest in boundary plantation (34.56 t ha -1 ). The hypothesis that all soils under different TOF strata have similar quality and same SOC build up rate was observed otherwise with SPCP exhibiting highest CSQI. SPCP was observed to be more qualitative and dynamic growing system among all strata with an enhanced capacity to fix and conserve SOC to help mitigate climate change. Present study demands plantation of more trees outside the forest areas especially in the pattern of SPCP for enrichment of soil and enhancement of carbon sequestration.
      (© 2022. The Author(s), under exclusive licence to Springer Nature Switzerland AG.)
    • References:
      Adderley, W. P., Jenkins, D. A., Sinclair, E. L., Stevens, P. A., & Verinumbe, I. (1997). The influence of soil variability on tree establishment at an experimental agroforestry site in North East Nigeria. Soil Use and Management, 13, 1–8. (PMID: 10.1111/j.1475-2743.1997.tb00549.x)
      Ahad, T., Kanth, T. A., & Nabi, S. (2015). Soil bulk density as related to texture, organic matter content and porosity in Kandi soils of district Kupwara (Kashmir valley India. International Journal of Scientific Research, 4(1), 2277–8179.
      Akhtar, F. (1997). Evaluation of sulphur in some paddy growing soils of Kashmir. M, 1–102.
      Alaie, T. A., & Gupta, R. (2019). Assessment of soil pH, EC and OC in different land use systems of Doda district, J&K, India. International Journal of Current Microbiology and Applied Sciences, 8(6), 813–818. (PMID: 10.20546/ijcmas.2019.806.098)
      Amos-Tautua, B. M. W., Oningbinde, A. O., & Ere, D. (2014). Assessment of some heavy metals and physicochemical properties in surface soils of municipal open waste dumpsite in Yenagoa, Nigeria. African Journal of Environmental Science and Technology, 8(1), 41–47. (PMID: 10.5897/AJEST2013.1621)
      Andrews, S. S., Karlen, D. L., & Mitchell, J. P. (2002). A comparison of soil quality indexing methods for vegetable production systems in Northern California. Agriculture, Ecosystems and Environment, 90, 25–45. (PMID: 10.1016/S0167-8809(01)00174-8)
      Anonymous. (2011). Directorate of economics and statistics, District Statistics and Evaluation Office, Ganderbal, Jammu and Kashmir India.
      Ashraf, M. (2016). Carbon sequestration assessment of vegetation and soil in Dachigam National Park. Ph.D. Thesis, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, 1–95.
      Bastida, F., Zsolnay, A., Hernández, T., & García, C. (2008). Past, present and future of soil quality indices: A biological perspective. Geoderma, 147(3), 159–171. (PMID: 10.1016/j.geoderma.2008.08.007)
      Bellefontaine, R., Petit, S., Pain-Orcet, M., Deleporte, P., & Bertault, J. (2001). Les arbres hors forêt: Vers une meilleure prise en compte. Cahiers FAO conservation, 35.
      Bonini, C. S. B., & Alves, M. C. (2010). Relation between soil organic matter and physical properties of a degraded oxisol in recovery with green manure, lime and pasture. In 19th World Congress of Soil Science, Soil Solutions for a Changing World, 1–6 August (p. 2436). Soil Science Australia.
      Bouwman, A. F. (1990). Soils and greenhouse effect. J. Wiley and Sons.
      Buhler, O., Kristoffersen, P., & Larsen, S. (2007). Growth of street trees in Copenhagen with emphasis on the effect of different establishment concepts. Arboriculture and Urban Forestry, 36(5), 330–337. (PMID: 10.48044/jauf.2007.038)
      Dar, I. Y. (2011). Edaphic factors and plant community organization in Branwar forest of Kashmir Himalaya. University of Kashmir.
      De Haan, S. (1977). Humus, its formation, its relation with the mineral part of the soil and its significance for soil productivity. In Organic matter studies, vol 1. International Atomic Energy Agency, Vienna (pp. 21–30).
      Delgado-Baquerizo, M., Maestre, F. T., Gallardo, A., Bowker, M. A., Wallenstein, M. D., Quero, J. L., Ochoa, V., Gozalo, B., García-Gómez, M., Soliveres, S., García-Palacios, P., Berdugo, M., Valencia, E., Escolar, C., Arredondo, T., & Barraza-Zepeda, C. (2013). Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature, 502, 672–676. (PMID: 10.1038/nature12670)
      Deng, Y., & Dixon, J. (2007). Soil organic matter and organomineral interactions: soil mineralogy with environmental applications. In J. B. Dixon & D. G. Schulze (Eds.). Soil Science Society of America.
      Ditzler, C. A., & Tugel, A. J. (2002). Soil quality field tools of USDA-NRCS soil quality institute. Agronomy Journal, 94, 33–38.
      Doran, J. W., & Parkin, B. T. (1994). Defining and assessing soil quality. In J. W. Doran, D. C. Coleman, D. F. Bezdicek, & B. A. Stewart (Eds.), (pp. 3–21). SSSA Inc.
      Duguma, L. S., Hager, H., & Sieghardt, M. (2010). Effects of land use types on soil chemical properties in smallholder farmers of central highland Ethiopia. Ekologia (Bratislava, 29(1), 1–14.
      F.A.O. (2018). The Koronivia joint work on agriculture and the convention bodies: An overview. In Food and Agriculture Organization of the United Nations (FAO).
      Foresta, H., Somarriba, E., Temu, A., Boulanger, D., Feuilly, H., & Gauthier, M. (2013). Towards the assessment of trees outside forests forest. In Resources Assessment Working Paper 183. FAO.
      F.S.I. (2019). Indian state of forest report 2019. Forest survey of India, Ministry of Environment and Forest. Dehradun.
      Gairola, S., Sharma, C. M., Ghildiyal, S. K., & Suyal, S. (2012). Chemical properties of soils in relation to forest composition in moist temperate valley slopes of Garhwal Himalaya India. The Environmentalist, 32(4), 512–523. (PMID: 10.1007/s10669-012-9420-7)
      Galantini, J. A., Duval, M., Iglesias, J. O., & Krüger, H. (2014). Continuous wheat in semiarid regions: Long-term effects on stock and quality of soil organic carbon. Soil Science, 179, 284–292. (PMID: 10.1097/SS.0000000000000072)
      Ganai, M. R. (2001). Nutrient status of saffron soils and their management. In: Proceedings of a Seminar-cum-Workshop on the Development of Saffron, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shalimar, Srinagar.
      Gelaw, A. M., Singh, B. R., & Lal, R. (2015). Soil quality indices for evaluating smallholder agricultural land uses in Northern Ethiopia. Sustainability, 7, 2322–2337. (PMID: 10.3390/su7032322)
      George, T. R., Bhat, J. A., Wani, M. A., Maqbool, M., Ramzan, Y., & SR, & Mariya. (2021). Mapping of spatial variability of soil texture and macronutrients in Wangath watershed, Ganderbal district of Jammu and Kashmir using GIS. Journal of Pharmacognosy and Phytochemistry, 10(2), 628–642.
      Githae, E. W., Gachene, C. K. K., & Njoka, J. T. (2011). Soil physicochemical properties under Acaciasenegal varieties in the dryland areas of Kenya. African Journal of Plant Science, 5, 475–482.
      Goswami, S., Verma, K. S., & Kaushal, R. (2014). Biomass and carbon sequestration in different agroforestry systems of a western Himalayan watershed. Biological Agriculture and Horticulture, 30, 88–96. (PMID: 10.1080/01448765.2013.855990)
      Gutzwiller, K. (Ed.). (2002). Applying landscape ecology in biological conservation. Springer-Verlag.
      Handoo, G. M. (1983). Organic matter fractions in soils of Jammu and Kashmir State developed under different bio and climosequence. Ph. D. Thesis, Himachal Pradesh Krishivishva Vidyayala, Palampur, 180.
      Hanski, I. (2011). Habitat loss, the dynamics of biodiversity, and a perspective on conservation. Ambio, 40, 248–255. (PMID: 10.1007/s13280-011-0147-3)
      Hussain, S. S., Sharma, V., Arya, V. M., Sharma, K. R., & Ch, S. (2019). Organic and inorganic carbon in soils under different land use/land cover systems in the foothill Himalayas. CATENA, 182, 1–8. (PMID: 10.1016/j.catena.2019.104104)
      I.P.C.C. (2000). Landuse, landuse change and forestry. In R. Watson, I. Noble, B. Bolin, N. Ravindranath, D. Verardo, & D. Dokken (Eds.). WHO/UNEP, Cambridge University Press.
      IPCC. (2003). Good Practice Guidance for Land Use, Land-Use Change and Forestry. In J. Penman, M. Gytarsky, T. Hiraishi, T. Krug, D. Kruger, R. Pipatti, L. Buendia, K. Miwa,  T. Ngara, K. Tanabe, F. Wagner (Eds). Intergovernmental Panel on Climate Change (IPCC), IPCC/IGES, Hayama, Japan.
      I.P.C.C. (2006). Guidelines for national greenhouse gas inventories. In Agriculture, forestry and other landuse (AFLOLU) (vol. 4). Institute for Global Environmental Strategies.
      Jackson, M. L. (1973). Soil chemical analysis. 2nd medium. Prentice Hall of India.
      Kanthaliya, P. C., & Bhat, P. L. (1991). Relation between organic carbon and available nutrients in some soils of sub-humid zone. Indian Society of Soil Science, 39, 781–782.
      Karlen, D. L., Andrews, S. S., Doran, J. W., & Wienhold, B. J. (2003). Soil quality: Humankind’s foundation for survival. Journal of Soil Water Conservation, 58, 171–179.
      Karlen, D. L., Mausbach, M. J., Doran, J. W., Cline, R. G., Harris, R. F., & Schumann, G. F. (1997). Soil quality: A concept, definition and framework for evaluation. Soil Science Society of America Journal, 61, 4–10. (PMID: 10.2136/sssaj1997.03615995006100010001x)
      Kaur, R., & Bhat, Z. A. (2017). Effect of different agricultural land use systems on physico-chemical properties of soil in sub-mountainous districts of Punjab, North-West India. Journal of Pharmacognosy and Phytochemistry, 6(3), 226–233.
      Khaki, B. A., Wani, A. A., Bhardwaj, D. R., & Singh, V. R. (2016). Soil carbon sequestration under different agroforestry land use system. Indian Forester, 142(8), 734–738.
      Khan, S., & Ramshoo, S. A. (2014). Integrated analysis of geomorphic, pedologic and remote sensing data for digital soil mapping. Global Journal for Research Analysis, 3(6), 2277–8160.
      Khanday, M. D., Wani, J. A., Ram, D., & Kumar, S. (2018). Depth wise distribution of available nutrients of soils of horticulture growing areas of Ganderbal district of Kashmir valley. Journal of Pharmacognosy and Phytochemistry, 7(1), 19–22.
      Khushboo, Bhat, M. A., Wani, M. A. & Bangroo, S. A. (2020). Distribution of Various Geochemical Forms of Potassium under Horticulture Land Use System of District Ganderbal. Current Journal of Applied Science and Technology 39(43): 1–10.
      Kome, G. K., Enang, R. K., Tabi, F. O., & Yerima, B. P. K. (2019). Influence of clay minerals on some soil fertility attributes: A review. Open J. Soil Sci, 9, 155–188. (PMID: 10.4236/ojss.2019.99010)
      Konijnendijk, C. C., Nilsson, K., & Randrup. (2005). Urban forests and trees: a reference book. In T. B. (Ed.). Springer.
      Kusumo, B. H., Hedley, M. J., Hedley, C. B., & Tuohy, M. P. (2011). Measuring carbon dynamics in field soils using soil spectral reflectance: Prediction of maize root density, soil organic carbon and nitrogen content. Plant and Soil, 338, 233–245. (PMID: 10.1007/s11104-010-0501-4)
      Lal, R. (2001). Potential of desertification control to sequester carbon and mitigate the greenhouse effect. Climate Change, 51, 35–92. (PMID: 10.1023/A:1017529816140)
      Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. Science, 304, 1623–1627. (PMID: 10.1126/science.1097396)
      Lal, R. J., & Kimble, J. M. (2000). Pedogenic carbonates and the global carbon cycle. In R. Lal, J. M. Kimble, H. Eswaran, & B. A. Stewart (Eds.). CRC Press.
      Lal, R., Kimble, J. M., & Follett, R. F. (1997). Land use and oil C pools in terrestrial ecosystem. In R. Lal (Ed.), Management of Carbon Sequestration in Soil. CRC-Press.
      Larson, W. E., & Pierce, F. J. (1991). Conservation and enhancement of soil quality. In J. Dumanski (Ed.), Evaluation for sustainable land management in the developing world (vol. 2, pp. 175–203). IBSRAM.
      Leifeld, J., Bassin, S., & Fuhrer, J. (2005). Carbon stocks in Swiss agricultural soils predicted by land-use, soil characteristics and altitude. Agriculture, Ecosystems & Environment, 105, 255–266. (PMID: 10.1016/j.agee.2004.03.006)
      Liebig, M. A., Varvel, G., & Doran, J. W. (2001). A simple performance-based index for assessing multiple agroecosystem functions. Agron.
      Liu, R., Pan, Y., Bao, H., Liang, S., Jiang, Y., Tu, H., Nong, J., & Huang, W. (2020). Variations in soil physico-chemical properties along slope position gradient in secondary vegetation of the Hilly region, Guilin, Southwest China. Sustainability, 12, 1–16.
      Londo, A. J., Kushla, J. D., & Carter, R. C. (2006). Soil pH and tree species suitability in the south. Southern. Regional Extension Forestry, 2, 1–4.
      Lumsden, L. F., & Bennett, A. F. (2005). Scattered trees in rural landscapes: Foraging habitat for insectivorous bats in south-eastern Australia. Biological Conservation, 122, 205–222. (PMID: 10.1016/j.biocon.2004.07.006)
      Lund, H. G. (2002). When is a Forest Not a Forest? Journal of Forestry, 100, 21–28.
      Manning, A. D., Fischer, J., & Lindenmayer, D. B. (2006). Scattered trees are keystone structures—implications for conservation. Biological Conservation, 132, 311–321. (PMID: 10.1016/j.biocon.2006.04.023)
      Maqbool, M., Rasool, R., & Ramzan, S. (2017). Soil physico-chemical properties as impacted by different land use systems in district Ganderbal, Jammu and Kashmir India. International Journal of Chemical Studies, 5(4), 832–840.
      Marzaioli, R., D’Ascoli, R., De Pascale, R. A., & Rutigliano, F. A. (2010). Soil quality in a Mediterranean area of Southern Italy as related to different land use type. Applied Soil Ecology, 44, 205–212. (PMID: 10.1016/j.apsoil.2009.12.007)
      McDonnell, M. J., Hahs, A. K., & Breuste, J. H. (2009). Ecology of cities and towns: A comparative approach. Cambridge University Press.
      Mehraj, B., Wani, A. A., Gatoo, A. A., Saleem, I., Anjum, A., Arjumand, T., Hussain, A., Murtaza, S., Farooq, A., & Islam, M. A. (2021). Assessment of landuse land cover with special reference to trees outside forests (TOF) in the central region of Kashmir Himalayas using IRS LISS-IV data. Indian Forester, 147(9), 759–763. (PMID: 10.36808/if/2021/v147i9/165511)
      Mohato, D. (2013). Vegetation dynamics of chir pine forests along altitudinal gradient in Giri catchment of Himachal Pradesh [PhD theis, Dr YS Parmar University of Horticulture and Forestry].
      Muchane, M. N., Sileshi, G. W., Gripenberge, S., Jonsson, M., Pumariño, L., & Barrios, E. (2020). Agroforestry boosts soil health in the humid and sub-humid tropics: a metaanalysis. Agriculture, Ecosystems and Environment, 295, 106899.
      Murphy, B. W. (2015). Impact of soil organic matter on soil properties—a review with emphasis on Australian soils. Soil Res, 53, 605–635. (PMID: 10.1071/SR14246)
      Najar, G. R., Akhtar, F., Singh, W., & SR, & J.A. (2009). Characterization and classification of some apple growing soil of Kashmir. Journal of the Indian Society of Soil Science, 57(1), 81–84.
      Nawaz, M. F., Mazhar, K., Gul, S., Ahmad, I., Yasin, G., Asif, M., & Tanvir, M. (2017). Comparing the early stage carbon sequestration rates and effects on soil physico-chemical properties after two years of planting agroforestry trees. Journal of Basic & Applied Sciences, 13, 527–533. (PMID: 10.6000/1927-5129.2017.13.86)
      Neina, D. (2019). The role of soil pH in plant nutrition and soil remediation. Applied and Environmental Soil Science, 1–9.
      Nowak, D. J., & Crane, D. E. (2002). Carbon storage and sequestration by urban trees in the USA. Environ Poll, 116, 381–389. (PMID: 10.1016/S0269-7491(01)00214-7)
      Oliveira, D. M. S., Paustian, K., Cotrufo, M. F., Fiallos, A. R., Cerqueira, A. G., & Cerri, C. E. P. (2017). Assessing labile organic carbon in soils undergoing land use change in Brazil: A comparison of approaches. Ecological Indicators, 72, 411–419. (PMID: 10.1016/j.ecolind.2016.08.041)
      Olorunfemi, I. E., Fasinmirina, J. T., & Akinola, F. F. (2018). Soil physico-chemical properties and fertility status of long-term land use and cover changes: A case study in Forest vegetative zone of Nigeria. Eurasian Journal of Soil Science, 7(2), 133–150.
      Olsen, S., Cole, C., Watanate, I., & Dean, L. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. US Department of Agriculture.
      Pain-Orcet, M., & Bellefontaine, R. (2004). Trees outside forests: a new perspective on the management of forest resources in the tropics. In B. T. D. Paris (Ed.), (pp. 423–430).
      Palmer, J., Thorburn, P. J., Biggs, J. S., Dominati, E. J., Probert, M. E., Meier, E. A., Huth, N. I., Dodd, M., Snow, V., Larsen, J. R., & Parton, W. J. (2017). Nitrogen cycling from increased soil organic carbon contributes both positively and negatively to ecosystem services in wheat agro-ecosystems. Frontiers in Plant Science, 8, 731. https://doi.org/10.3389/fpls.2017.00731. (PMID: 10.3389/fpls.2017.00731)
      Panday, D., Ojha, R. B., Chalise, D., Das, S., & Twanabas, B. (2019). Spatial variability of soil properties under different land use in the Dang district of Nepal. Cogent Food and Agriculture, 5(1), 1600460. (PMID: 10.1080/23311932.2019.1600460)
      Piper, C. S. (1966). Soil and plant analysis. Publishers.
      Plieninger, T., Pulido, F. J., & Schaich, H. (2004). Effects of land-use and landscape structure on holm oak recruitment and regeneration at farm level in Quercus ilex L. dehesas. Journal of Arid Environments, 57, 345–364. (PMID: 10.1016/S0140-1963(03)00103-4)
      Post, W. M., Emmanuel, W. R., Zinke, P. J., & Stangenberger, P. J. (1982). Soil Carbon Pools and World Life Zones. Nature, 298, 156–159. (PMID: 10.1038/298156a0)
      Qi, Y., Darilek, J. L., Huang, B., Zhao, Y., Sun, W., & Gu, Z. (2009). Evaluating soil quality indices in an agricultural region of Jiangsu Province, China. Geoderma, 149, 325–334. (PMID: 10.1016/j.geoderma.2008.12.015)
      Quinton, J. N., Govers, G., Van Oost, K., & Bardgett, R. D. (2010). The impact of agricultural soil erosion on biogeochemical cycling. Nature Geoscience, 3, 311–314. (PMID: 10.1038/ngeo838)
      Rahmanipour, F., Marzaioli, R., Hossein, A. B., Fereidouni, Z., & Sima, R. B. (2014). Assessment of soil quality indices in agricultural lands of Qazvin Province Iran. Ecological Indicators, 40, 19–26. (PMID: 10.1016/j.ecolind.2013.12.003)
      Raina, A. K., Jha, M. N., & Pharasi, S. C. (2001). Forest soil: Vegetation relationship in Mussoorie forest division (Uttaranchal. Indian Forester, 8, 883–890.
      Rathore, M. S., Srinivasulu, Y., Kour, R., Darzi, G. M., Dhar, A., & Khan, M. A. (2011). Integrated soil nutrient management in mulberry under temperate conditions. Europ. J Biol Sci, 3(4), 105–111.
      Raza, M., Ahmad, A., & Mohammad, A. (1978). The valley of Kashmir: A geographical Interpretation. Vikas Publishing House, Pvt.
      Robinson, D. A., Fraser, I., Dominati, E. J., Davíðsdóttir, B., Jónsson, J. O. G., & Jones, L. (2014). On the value of soil resources in the context of natural capital and ecosystem service delivery. Soil Science Society of America Journal, 78, 685–700. (PMID: 10.2136/sssaj2014.01.0017)
      Rojas, J. M., Prause, J., Sanzano, G. A., Arce, O. E. A., & Sanchez, M. C. (2016). Soil quality indicators selection by mixed models and multivariate techniques in deforested areas for agricultural use in NW of Chaco, Argentina. Soil Tillage Res, 155, 250–262. (PMID: 10.1016/j.still.2015.08.010)
      Sakin, E. (2012). Organic carbon, organic matter and bulk density relationships in arid-semi arid soils in Southeast Anatolia region. African Journal of Biotechnology, 11(6), 1373–1377.
      Sallustio, L., Cristofaro, M. D., Hashmi, M. M., Vizzarri, M., Sitzia, M., Lasserre, B., & Marchetti, M. (2018). Evaluating the contribution of trees outside forests and small open areas to the Italian landscape diversification during the last decades. Forests, 9(11), 701. https://doi.org/10.3390/f9110701. (PMID: 10.3390/f9110701)
      Sarker, S., & JR, BP, C., & A.L. (2018). Agricultural management practices impacted carbon and nutrient concentrations in soil aggregates, with minimal influence on aggregate stability and total carbon and nutrient stocks in contrasting soils. Soil Tillage Res, 178, 209–223. (PMID: 10.1016/j.still.2017.12.019)
      See, C. R., Yanai, R. D., Fisk, M. C., Vadeboncoeur, M. A., Quintero, B. A., & Fahey, T. J. (2015). Soil nitrogen affects phosphorus recycling: Foliar resorption and plant–soil feedbacks in a northern hardwood forest. Ecology, 96, 2488–2498. https://doi.org/10.1890/15-0188.1. (PMID: 10.1890/15-0188.1)
      Schnell, S., Kleinn, C. & Stahl, G. (2015). Monitoring trees outside forests. Environmental Monitor Assessment 187, 600.
      Sharma, K. L. (2011). Effect of agroforestry systems on soil quality-monitoring and assessment. http://www.crida.in/DRM1-Winter%20School/KLS.pdf/ . Accessed 12 Dec 2020.
      Sharma, R., & Sood, K. (2020). Characterization of spatial variability of soil parameters in Apple orchards of Himalayan region using Geostatistical analysis. Communications in Soil Science and Plant Analysis. https://doi.org/10.1080/00103624.2020.17446. (PMID: 10.1080/00103624.2020.17446)
      Singh, K., & Chand, P. (2012). Above-ground tree outside forest (TOF) phytomass and carbon estimation in the semi-arid region of southern Haryana: A synthesis approach of remote sensing and field data. Journal of Earth System Science, 6, 1469–1482. (PMID: 10.1007/s12040-012-0237-z)
      Singh, M., Gupta, B., & Das, S. K. (2018). Soil organic carbon density under different agroforestry systems along an elevation gradient in north-western Himalaya. Range Management and Agroforestry, 39(1), 8–13.
      Sliver, W., Neff, J., McGraddy, M., Veldkamp, E., Keller, M., & Cosme, R. (2000). Effect of soils texture on belowground carbon and nutrient storage in a lowland Amazonlan forest ecosystem. Ecosystem, 3, 193–200. (PMID: 10.1007/s100210000019)
      Smith, J. L. & Doran, J. W. (1996) Measurement and Use of pH and Electrical Conductivity for Soil Quality Analysis. In: Doran, J.W and Jones, A.J., Eds., Methods For assessing Soil Quality, Soil Science Society of America Journal, SSSA, Madison, 49.
      S.S.S.A. (1987). Glossary of soil science terms. SSSA Inc.
      Subbiah, B. V., & Asija, G. L. (1956). A rapid procedure for the estimation of available nitrogen in soils. Current Science, 25, 259–260.
      Sun, B., Zhou, S., & Zhao, Q. (2003). Evaluation of spatial and temporal changes of soil quality based on geostatistical analysis in the hill region of subtropical China. Geoderma, 115, 85–99. (PMID: 10.1016/S0016-7061(03)00078-8)
      Tyrvainen, L., Pauleit, S., Seeland, K., & Vries, S. (2005). Benefits and uses of urban forests and trees. In C. C. Konijnendijk, K. Nilsson, & T. B. Randrup (Eds.). Springer.
      Walia, C. S., & Chamuah, G. S. (1992). Soil profile development in relation to land use. Journal of Indian Society of Soil Science, 46, 220–222.
      Walkley, A., & Black, T. A. (1934). An examination of the digestion method for determining soil organic matter and a proposed modification of chromic acid titration method. Soil Science, 37, 29–38. (PMID: 10.1097/00010694-193401000-00003)
      Wang, X. J., & Gong, Z. T. (1998). Assessment and analysis of soil quality changes after eleven years of reclamation in subtropical China. Geoderma, 81, 339–355. (PMID: 10.1016/S0016-7061(97)00109-2)
      Wani, A. A., Bhat, A. F., Gatoo, A. A., Zahoor, S., Mehraj, B., Najam, N., Wani, Q. S., Islam, M. A., Murtaza, S., Dervash, M., & Joshi, P. K. (2021). Assessing relationship of forest biophysical factors with NDVI for carbon management in key coniferous strata of temperate Himalayas. Mitigation and Adaptation Strategies for Global Change, 26(1), 1–22. https://doi.org/10.1007/s11027-021-09937-6. (PMID: 10.1007/s11027-021-09937-6)
      Wani, A. A., Joshi, P. K., Singh, O., & Bhat, J. A. (2014). Estimating soil carbon storage and mitigation under temperate coniferous forests in the southern region of Kashmir Himalayas. Mitigation and Adaptation Strategy for Global Change, 19(8), 1179–1194. (PMID: 10.1007/s11027-013-9466-y)
      Wani, A. A., Joshi, P. K., Singh, O., Kumar, R., & Rawat, V. R. S. (2017). Forest biomass carbon dynamics (1980–2009) in Western Himalaya in the context of REDD+ policy. Environmental Earth Sciences, 76, 573. https://doi.org/10.1007/s12665-017-6903-3. (PMID: 10.1007/s12665-017-6903-3)
      Watson, R. T., Noble, I. R., Bolin, B., Ravindranath, N. H., & Verardo, D. J. (2000). IPCC special report on land use, land-use change and forestry.
      Wilde, S. A., Voigt, G. K., & Iyer, J. G. (1964). Soil and plant analysis for tree culture. Oxford Publishing House.
      Xu, J. M., Tang, C., & Chen, Z. L. (2006). The role of plant residues in pH change of acid soils differing in initial pH. Soil Biology & Biochemistry, 38, 709–719. (PMID: 10.1016/j.soilbio.2005.06.022)
      Yihenew, G. (2002). Selected chemical and physical characteristics of soils Adet Research Center and its testing sites in North-Western Ethiopia. Ethiopian Journal of Natural Resources, 4(2), 199–215.
    • Grant Information:
      DST/IS-STAC/CO2-SR-220/14(G) Department of Science and Technology, Government of India
    • Contributed Indexing:
      Keywords: Additive soil quality index (ASQI); Kashmir Himalayas; Scattered patches with clumpy plantation (SPCP); Soil organic carbon (SOC); Trees outside forests (TOFs)
    • Accession Number:
      0 (Soil)
      7440-44-0 (Carbon)
    • Publication Date:
      Date Created: 20220316 Date Completed: 20220318 Latest Revision: 20220526
    • Publication Date:
      20231215
    • Accession Number:
      10.1007/s10661-022-09922-9
    • Accession Number:
      35294659