Long-term (statistically learnt) and short-term (inter-trial) distractor-location effects arise at different pre- and post-selective processing stages.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Blackwell Country of Publication: United States NLM ID: 0142657 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1540-5958 (Electronic) Linking ISSN: 00485772 NLM ISO Abbreviation: Psychophysiology Subsets: MEDLINE
    • Publication Information:
      Publication: Malden, MA : Blackwell
      Original Publication: Baltimore, Williams & Wilkins.
    • Subject Terms:
    • Abstract:
      A salient distractor interferes less with visual search if it appears at a location where it is likely to occur, referred to as distractor-location probability cueing. Conversely, if the current target appears at the same location as a distractor on the preceding trial, search is impeded. While these two location-specific "suppression" effects reflect long-term, statistically learnt and short-term, inter-trial adaptations of the system to distractors, it is unclear at what stage(s) of processing they arise. Here, we adopted the additional-singleton paradigm and examined lateralized event-related potentials (L-ERPs) and lateralized alpha (8-12 Hz) power to track the temporal dynamics of these effects. Behaviorally, we confirmed both effects: reaction times (RTs) interference was reduced for distractors at frequent versus rare (distractor) locations, and RTs were delayed for targets that appeared at previous distractor versus non-distractor locations. Electrophysiologically, the statistical-learning effect was not associated with lateralized alpha power during the pre-stimulus period. Rather, it was seen in an early N1pc referenced to the frequent distractor location (whether or not a distractor or a target occurred there), indicative of a learnt top-down prioritization of this location. This early top-down influence was systematically modulated by (competing) target- and distractor-generated bottom-up saliency signals in the display. In contrast, the inter-trial effect was reflected in an enhanced SPCN when the target was preceded by a distractor at its location. This suggests that establishing that an attentionally selected item is a task-relevant target, rather than an irrelevant distractor, is more demanding at a previously "rejected" distractor location.
      (© 2023 The Authors. Psychophysiology published by Wiley Periodicals LLC on behalf of Society for Psychophysiological Research.)
    • References:
      Allenmark, F., Gokce, A., Geyer, T., Zinchenko, A., Müller, H. J., & Shi, Z. (2021). Inter-trial effects in priming of pop-out: Comparison of computational updating models. PLoS Computational Biology, 17(9), e1009332. https://doi.org/10.1371/journal.pcbi.1009332.
      Allenmark, F., Müller, H. J., & Shi, Z. (2018). Inter-trial effects in visual pop-out search: Factorial comparison of Bayesian updating models. PLoS Computational Biology, 14(7), e1006328. https://doi.org/10.1371/journal.pcbi.1006328.
      Allenmark, F., Shi, Z., Pistorius, R. L., Theisinger, L. A., Koutsouleris, N., Falkai, P., Müller, H. J., & Falter-Wagner, C. M. (2021). Acquisition and use of “priors” in autism: Typical in deciding where to look, atypical in deciding what is there. Journal of Autism and Developmental Disorders, 51(10), 3744-3758. https://doi.org/10.1007/s10803-020-04828-2.
      Allenmark, F., Zhang, B., Liesefeld, H. R., Shi, Z., & Müller, H. J. (2019). Probability cueing of singleton-distractor regions in visual search: The locus of spatial distractor suppression is determined by colour swapping. Visual Cognition, 27(5-8), 576-594. https://doi.org/10.1080/13506285.2019.1666953.
      Allenmark, F., Zhang, B., Shi, Z., & Müller, H. J. (2022). Learning to suppress likely distractor locations in visual search is driven by the local distractor frequency. bioRxiv (p. 2022.04.29.489854) https://doi.org/10.1101/2022.04.29.489854.
      Auksztulewicz, R., & Friston, K. (2016). Repetition suppression and its contextual determinants in predictive coding. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior, 80, 125-140. https://doi.org/10.1016/j.cortex.2015.11.024.
      Awh, E., Belopolsky, A. V., & Theeuwes, J. (2012). Top-down versus bottom-up attentional control: A failed theoretical dichotomy. Trends in Cognitive Sciences, 16(8), 437-443. https://doi.org/10.1016/j.tics.2012.06.010.
      Bacigalupo, F., & Luck, S. J. (2015). The allocation of attention and working memory in visual crowding. Journal of Cognitive Neuroscience, 27(6), 1180-1193. https://doi.org/10.1162/jocn_a_00771.
      Baker, K. S., Yamamoto, N., Pegna, A. J., & Johnston, P. (2022). Violated expectations for spatial and feature attributes of visual trajectories modulate event-related potential amplitudes across the visual processing hierarchy. Biological Psychology, 174, 108422. https://doi.org/10.1016/j.biopsycho.2022.108422.
      Bengson, J. J., Mangun, G. R., & Mazaheri, A. (2012). The neural markers of an imminent failure of response inhibition. NeuroImage, 59(2), 1534-1539. https://doi.org/10.1016/j.neuroimage.2011.08.034.
      Benwell, C. S. Y., London, R. E., Tagliabue, C. F., Veniero, D., Gross, J., Keitel, C., & Thut, G. (2019). Frequency and power of human alpha oscillations drift systematically with time-on-task. NeuroImage, 192, 101-114. https://doi.org/10.1016/j.neuroimage.2019.02.067.
      Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10(4), 433-436. https://www.ncbi.nlm.nih.gov/pubmed/9176952.
      Chun, M. M., & Jiang, Y. (1998). Contextual cueing: Implicit learning and memory of visual context guides spatial attention. Cognitive Psychology, 36(1), 28-71. https://doi.org/10.1006/cogp.1998.0681.
      Cohen, M. X. (2014). Analyzing neural time series data: theory and practice. https://books.google.ca/books?hl=en&lr=&id=rDKkAgAAQBAJ&oi=fnd&pg=PR5&ots=g9cguWYVw_&sig=279awkchHZHu941cK6BJ_3Y2hjY.
      Dodwell, G., Liesefeld, H. R., Conci, M., Müller, H. J., & Töllner, T. (2021). EEG evidence for enhanced attentional performance during moderate-intensity exercise. Psychophysiology, 58(12), e13923. https://doi.org/10.1111/psyp.13923.
      Donohue, S. E., Bartsch, M. V., Heinze, H.-J., Schoenfeld, M. A., & Hopf, J.-M. (2018). Cortical mechanisms of prioritizing selection for rejection in visual search. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 38(20), 4738-4748. https://doi.org/10.1523/JNEUROSCI.2407-17.2018.
      Egeth, H. E., & Yantis, S. (1997). Visual attention: Control, representation, and time course. Annual Review of Psychology, 48, 269-297. https://doi.org/10.1146/annurev.psych.48.1.269.
      Eimer, M. (1996). The N2pc component as an indicator of attentional selectivity. Electroencephalography and Clinical Neurophysiology, 99(3), 225-234. https://doi.org/10.1016/0013-4694(96)95711-9.
      Eimer, M., & Kiss, M. (2010). An electrophysiological measure of access to representations in visual working memory. Psychophysiology, 47(1), 197-200. https://doi.org/10.1111/j.1469-8986.2009.00879.x.
      Gaspelin, N., Leonard, C. J., & Luck, S. J. (2015). Direct evidence for active suppression of salient-but-irrelevant sensory inputs. Psychological Science, 26(11), 1740-1750. https://doi.org/10.1177/0956797615597913.
      Gaspelin, N., & Luck, S. J. (2018a). The role of inhibition in avoiding distraction by salient stimuli. Trends in Cognitive Sciences, 22(1), 79-92. https://doi.org/10.1016/j.tics.2017.11.001.
      Gaspelin, N., & Luck, S. J. (2018b). Distinguishing among potential mechanisms of singleton suppression. Journal of Experimental Psychology. Human Perception and Performance, 44(4), 626-644. https://doi.org/10.1037/xhp0000484.
      Gaspelin, N., & Luck, S. J. (2018c). Combined electrophysiological and behavioral evidence for the suppression of salient distractors. Journal of Cognitive Neuroscience, 30(9), 1265-1280. https://doi.org/10.1162/jocn_a_01279.
      Geib, B. R., Cabeza, R., & Woldorff, M. G. (2020). Linking the rapid cascade of visuo-attentional processes to successful memory encoding. Cerebral Cortex, 31(4), 1861-1872. https://doi.org/10.1093/cercor/bhaa295.
      Geng, J. J. (2014). Attentional mechanisms of distractor suppression. Current Directions in Psychological Science, 23(2), 147-153. https://doi.org/10.1177/0963721414525780.
      Geng, J. J., & Behrmann, M. (2002). Probability cuing of target location facilitates visual search implicitly in normal participants and patients with hemispatial neglect. Psychological Science, 13(6), 520-525. https://doi.org/10.1111/1467-9280.00491.
      Geng, J. J., & Behrmann, M. (2005). Spatial probability as an attentional cue in visual search. Perception & Psychophysics, 67(7), 1252-1268. https://doi.org/10.3758/bf03193557.
      Geyer, T., Müller, H. J., & Krummenacher, J. (2006). Cross-trial priming in visual search for singleton conjunction targets: Role of repeated target and distractor features. Perception & Psychophysics, 68(5), 736-749. https://doi.org/10.3758/BF03193697.
      Gokce, A., Geyer, T., Finke, K., Müller, H. J., & Töllner, T. (2014). What pops out in positional priming of pop-out: Insights from event-related EEG lateralizations. Frontiers in Psychology, 5, 688. https://doi.org/10.3389/fpsyg.2014.00688.
      Goschy, H., Bakos, S., Müller, H. J., & Zehetleitner, M. (2014). Probability cueing of distractor locations: Both intertrial facilitation and statistical learning mediate interference reduction. Frontiers in Psychology, 5, 1195. https://doi.org/10.3389/fpsyg.2014.01195.
      Hilimire, M. R., & Corballis, P. M. (2014). Event-related potentials reveal the effect of prior knowledge on competition for representation and attentional capture. Psychophysiology, 51(1), 22-35. https://doi.org/10.1111/psyp.12154.
      Itthipuripat, S., Ester, E. F., Deering, S., & Serences, J. T. (2014). Sensory gain outperforms efficient readout mechanisms in predicting attention-related improvements in behavior. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 34(40), 13384-13398. https://doi.org/10.1523/JNEUROSCI.2277-14.2014.
      Jensen, O., & Mazaheri, A. (2010). Shaping functional architecture by oscillatory alpha activity: Gating by inhibition. Frontiers in Human Neuroscience, 4, 186. https://doi.org/10.3389/fnhum.2010.00186.
      Johannes, S., Münte, T. F., Heinze, H. J., & Mangun, G. R. (1995). Luminance and spatial attention effects on early visual processing. Brain Research. Cognitive Brain Research, 2(3), 189-205. https://doi.org/10.1016/0926-6410(95)90008-x.
      Jolicoeur, P., Brisson, B., & Robitaille, N. (2008). Dissociation of the N2pc and sustained posterior contralateral negativity in a choice response task. Brain Research, 1215, 160-172. https://doi.org/10.1016/j.brainres.2008.03.059.
      Kelly, S. P., Lalor, E. C., Reilly, R. B., & Foxe, J. J. (2006). Increases in alpha oscillatory power reflect an active retinotopic mechanism for distracter suppression during sustained visuospatial attention. Journal of Neurophysiology, 95(6), 3844-3851. https://doi.org/10.1152/jn.01234.2005.
      Kerzel, D., & Burra, N. (2020). Capture by context elements, not attentional suppression of distractors, explains the PD with small search displays. Journal of Cognitive Neuroscience, 32(6), 1170-1183. https://doi.org/10.1162/jocn_a_01535.
      Kiss, M., Van Velzen, J., & Eimer, M. (2008). The N2pc component and its links to attention shifts and spatially selective visual processing. Psychophysiology, 45(2), 240-249. https://doi.org/10.1111/j.1469-8986.2007.00611.x.
      Kleiner, M., Brainard, D., & Pelli, D. (2007). What's new in Psychtoolbox-3? https://pure.mpg.de/rest/items/item_1790332/component/file_3136265/content.
      Kumada, T., & Humphreys, G. W. (2002). Cross-dimensional interference and cross-trial inhibition. Perception & Psychophysics, 64(3), 493-503. https://doi.org/10.3758/bf03194720.
      Lange, J., Oostenveld, R., & Fries, P. (2013). Reduced occipital alpha power indexes enhanced excitability rather than improved visual perception. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 33(7), 3212-3220. https://doi.org/10.1523/JNEUROSCI.3755-12.2013.
      Larson, M. J., Clawson, A., Clayson, P. E., & Baldwin, S. A. (2013). Cognitive conflict adaptation in generalized anxiety disorder. Biological Psychology, 94(2), 408-418. https://doi.org/10.1016/j.biopsycho.2013.08.006.
      Leber, A. B., Gwinn, R. E., Hong, Y., & O'Toole, R. J. (2016). Implicitly learned suppression of irrelevant spatial locations. Psychonomic Bulletin & Review, 23(6), 1873-1881. https://doi.org/10.3758/s13423-016-1065-y.
      Liesefeld, H. R., Liesefeld, A. M., Töllner, T., & Müller, H. J. (2017). Attentional capture in visual search: Capture and post-capture dynamics revealed by EEG. NeuroImage, 156, 166-173. https://doi.org/10.1016/j.neuroimage.2017.05.016.
      Luck, S. J., Girelli, M., McDermott, M. T., & Ford, M. A. (1997). Bridging the gap between monkey neurophysiology and human perception: An ambiguity resolution theory of visual selective attention. Cognitive Psychology, 33(1), 64-87. https://doi.org/10.1006/cogp.1997.0660.
      Luck, S. J., & Hillyard, S. A. (1994). Spatial filtering during visual search: Evidence from human electrophysiology. Journal of Experimental Psychology. Human Perception and Performance, 20(5), 1000-1014. https://doi.org/10.1037//0096-1523.20.5.1000.
      Maheux, M., & Jolicœur, P. (2017). Differential engagement of attention and visual working memory in the representation and evaluation of the number of relevant targets and their spatial relations: Evidence from the N2pc and SPCN. Biological Psychology, 125, 28-35. https://www.sciencedirect.com/science/article/pii/S0301051117300248.
      Maljkovic, V., & Nakayama, K. (1994). Priming of pop-out: I. Role of features. Memory & Cognition, 22(6), 657-672. https://doi.org/10.3758/bf03209251.
      Maljkovic, V., & Nakayama, K. (1996). Priming of pop-out: II. The role of position. Perception & Psychophysics, 58(7), 977-991. https://doi.org/10.3758/BF03206826.
      Mallat, S. G. (2009). A theory for multiresolution signal decomposition: The wavelet representation. In Fundamental papers in wavelet theory (pp. 494-513). Princeton University Press. https://doi.org/10.1515/9781400827268.494.
      Mazaheri, A., van Schouwenburg, M. R., Dimitrijevic, A., Denys, D., Cools, R., & Jensen, O. (2014). Region-specific modulations in oscillatory alpha activity serve to facilitate processing in the visual and auditory modalities. NeuroImage, 87, 356-362. https://doi.org/10.1016/j.neuroimage.2013.10.052.
      Mazza, V., & Caramazza, A. (2011). Temporal brain dynamics of multiple object processing: The flexibility of individuation. PLoS One, 6(2), e17453. https://doi.org/10.1371/journal.pone.0017453.
      Mazza, V., Turatto, M., & Caramazza, A. (2009). An electrophysiological assessment of distractor suppression in visual search tasks. Psychophysiology, 46(4), 771-775. https://doi.org/10.1111/j.1469-8986.2009.00814.x.
      Mazza, V., Turatto, M., Umiltà, C., & Eimer, M. (2007). Attentional selection and identification of visual objects are reflected by distinct electrophysiological responses. Experimental Brain Research. Experimentelle Hirnforschung. Experimentation Cerebrale, 181(3), 531-536. https://doi.org/10.1007/s00221-007-1002-4.
      Miller, J. (1988). Components of the location probability effect in visual search tasks. Journal of Experimental Psychology. Human Perception and Performance, 14(3), 453-471. https://doi.org/10.1037//0096-1523.14.3.453.
      Müller, H. J., & Findlay, J. M. (1987). Sensitivity and criterion effects in the spatial cuing of visual attention. Perception & Psychophysics, 42(4), 383-399. https://doi.org/10.3758/bf03203097.
      Müller, H. J., Geyer, T., Zehetleitner, M., & Krummenacher, J. (2009). Attentional capture by salient color singleton distractors is modulated by top-down dimensional set. Journal of Experimental Psychology. Human Perception and Performance, 35(1), 1-16. https://doi.org/10.1037/0096-1523.35.1.1.
      Noonan, M. P., Adamian, N., Pike, A., Printzlau, F., Crittenden, B. M., & Stokes, M. G. (2016). Distinct mechanisms for distractor suppression and target facilitation. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 36(6), 1797-1807. https://doi.org/10.1523/JNEUROSCI.2133-15.2016.
      Orchard-Mills, E., Alais, D., & Van der Burg, E. (2013). Cross-modal associations between vision, touch, and audition influence visual search through top-down attention, not bottom-up capture. Attention, Perception & Psychophysics, 75(8), 1892-1905. https://doi.org/10.3758/s13414-013-0535-9.
      Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10(4), 437-442. https://www.ncbi.nlm.nih.gov/pubmed/9176953.
      Ratcliff, R. (1979). Group reaction time distributions and an analysis of distribution statistics. Psychological Bulletin, 86(3), 446-461. https://www.ncbi.nlm.nih.gov/pubmed/451109.
      Rommerskirchen, L., Lange, L., & Osinsky, R. (2021). The reward positivity reflects the integrated value of temporally threefold-layered decision outcomes. Psychophysiology, 58(5), e13789. https://doi.org/10.1111/psyp.13789.
      Sauter, M., Hanning, N. M., Liesefeld, H. R., & Müller, H. J. (2021). Post-capture processes contribute to statistical learning of distractor locations in visual search. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior, 135, 108-126. https://doi.org/10.1016/j.cortex.2020.11.016.
      Sauter, M., Liesefeld, H., & Müller, H. (2017). Learning to shield visual search from salient distractors: Evidence from the N2pc component. Journal of Vision, 17(10), 1137. https://doi.org/10.1167/17.10.1137.
      Sauter, M., Liesefeld, H. R., Zehetleitner, M., & Müller, H. J. (2018). Region-based shielding of visual search from salient distractors: Target detection is impaired with same- but not different-dimension distractors. Attention, Perception & Psychophysics, 80(3), 622-642. https://doi.org/10.3758/s13414-017-1477-4.
      Sawaki, R., & Luck, S. J. (2010). Capture versus suppression of attention by salient singletons: Electrophysiological evidence for an automatic attend-to-me signal. Attention, Perception & Psychophysics, 72(6), 1455-1470. https://doi.org/10.3758/APP.72.6.1455.
      Sawaki, R., & Luck, S. J. (2013). Active suppression after involuntary capture of attention. Psychonomic Bulletin & Review, 20(2), 296-301. https://doi.org/10.3758/s13423-012-0353-4.
      Schettino, A., Rossi, V., Pourtois, G., & Müller, M. M. (2016). Involuntary attentional orienting in the absence of awareness speeds up early sensory processing. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior, 74, 107-117. https://doi.org/10.1016/j.cortex.2015.10.016.
      Schneider, D., Beste, C., & Wascher, E. (2012). On the time course of bottom-up and top-down processes in selective visual attention: An EEG study. Psychophysiology, 49(11), 1492-1503. https://doi.org/10.1111/j.1469-8986.2012.01462.x.
      Shaw, M. L., & Shaw, P. (1977). Optimal allocation of cognitive resources to spatial locations. Journal of Experimental Psychology. Human Perception and Performance, 3(2), 201-211. https://doi.org/10.1037//0096-1523.3.2.201.
      Simmons, A. M., & Luck, S. J. (2020). Protocol for reducing COVID-19 transmission risk in EEG research. Research Square. https://doi.org/10.21203/rs.3.pex-974/v2.
      Soto-Faraco, S., Spence, C., & Kingstone, A. (2004). Cross-modal dynamic capture: Congruency effects in the perception of motion across sensory modalities. Journal of Experimental Psychology. Human Perception and Performance, 30(2), 330-345. https://doi.org/10.1037/0096-1523.30.2.330.
      Tallon-Baudry, C., Bertrand, O., Delpuech, C., & Pernier, J. (1997). Oscillatory γ-band (30-70 Hz) activity induced by a visual search task in humans. Journal of Neuroscience, 17(2), 722-734. https://www.jneurosci.org/content/17/2/722.short.
      Tallon-Baudry, C., Bertrand, O., Peronnet, F., & Pernier, J. (1998). Induced γ-band activity during the delay of a visual short-term memory task in humans. Journal of Neuroscience, 18(11), 4244-4254. https://www.jneurosci.org/content/18/11/4244.short.
      Tay, D., Harms, V., Hillyard, S. A., & McDonald, J. J. (2019). Electrophysiological correlates of visual singleton detection. Psychophysiology, 56(8), e13375. https://doi.org/10.1111/psyp.13375.
      Theeuwes, J. (1992). Perceptual selectivity for color and form. Perception & Psychophysics, 51(6), 599-606. https://doi.org/10.3758/BF03211656.
      Töllner, T., Rangelov, D., & Müller, H. J. (2012). How the speed of motor-response decisions, but not focal-attentional selection, differs as a function of task set and target prevalence. Proceedings of the National Academy of Sciences of the United States of America, 109(28), E1990-E1999. https://doi.org/10.1073/pnas.1206382109.
      Turatto, M., Bonetti, F., & Pascucci, D. (2018). Filtering visual onsets via habituation: A context-specific long-term memory of irrelevant stimuli. Psychonomic Bulletin & Review, 25(3), 1028-1034. https://doi.org/10.3758/s13423-017-1320-x.
      Turatto, M., & Pascucci, D. (2016). Short-term and long-term plasticity in the visual-attention system: Evidence from habituation of attentional capture. Neurobiology of Learning and Memory, 130, 159-169. https://doi.org/10.1016/j.nlm.2016.02.010.
      van Moorselaar, D., Daneshtalab, N., & Slagter, H. A. (2021). Neural mechanisms underlying distractor inhibition on the basis of feature and/or spatial expectations. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior, 137, 232-250. https://doi.org/10.1016/j.cortex.2021.01.010.
      van Moorselaar, D., Lampers, E., Cordesius, E., & Slagter, H. A. (2020). Neural mechanisms underlying expectation-dependent inhibition of distracting information. eLife, 9, 1-26. https://doi.org/10.7554/eLife.61048.
      van Moorselaar, D., & Slagter, H. A. (2019). Learning what is irrelevant or relevant: Expectations facilitate distractor inhibition and target facilitation through distinct neural mechanisms. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 39(35), 6953-6967. https://doi.org/10.1523/JNEUROSCI.0593-19.2019.
      Wang, B., & Theeuwes, J. (2018). Statistical regularities modulate attentional capture. Journal of Experimental Psychology, 44(1), 13-17. https://psycnet.apa.org/journals/xhp/44/1/13/.
      Wang, B., van Driel, J., Ort, E., & Theeuwes, J. (2019). Anticipatory distractor suppression elicited by statistical regularities in visual search. Journal of Cognitive Neuroscience, 31(10), 1535-1548. https://doi.org/10.1162/jocn_a_01433.
      Wolfe, J. M., Cave, K. R., & Franzel, S. L. (1989). Guided search: An alternative to the feature integration model for visual search. Journal of Experimental Psychology. Human Perception and Performance, 15(3), 419-433. https://doi.org/10.1037/0096-1523.15.3.419.
      Woodman, G. F., & Luck, S. J. (1999). Electrophysiological measurement of rapid shifts of attention during visual search. Nature, 400(6747), 867-869. https://doi.org/10.1038/23698.
      Worden, M. S., Foxe, J. J., Wang, N., & Simpson, G. V. (2000). Anticipatory biasing of visuospatial attention indexed by retinotopically specific α-Bank electroencephalography increases over occipital cortex. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 20(6), RC63. https://doi.org/10.1523/JNEUROSCI.20-06-j0002.2000.
      Zhang, B., Allenmark, F., Liesefeld, H. R., Shi, Z., & Muller, H. (2019). Probability cueing of singleton-distractor locations in visual search: Priority-map-or dimension-based inhibition? Journal of Experimental Psychology. Human Perception and Performance, 45(9), 1146-1163. https://doi.org/10.1037/xhp0000652.
      Zhang, B., Weidner, R., Allenmark, F., Bertleff, S., Fink, G. R., Shi, Z., & Müller, H. J. (2022). Statistical learning of frequent distractor locations in visual search involves regional signal suppression in early visual cortex. Cerebral Cortex, 32(13), 2729-2744. https://doi.org/10.1093/cercor/bhab377.
      Zhaoping, L., & Guyader, N. (2007). Interference with bottom-up feature detection by higher-level object recognition. Current Biology: CB, 17(1), 26-31. https://doi.org/10.1016/j.cub.2006.10.050.
      Zinchenko, A., Conci, M., Töllner, T., Müller, H. J., & Geyer, T. (2020). Automatic guidance (and misguidance) of visuospatial attention by acquired scene memory: Evidence from an N1pc polarity reversal. Psychological Science, 31(12), 1531-1543. https://doi.org/10.1177/0956797620954815.
    • Contributed Indexing:
      Keywords: EEG; N1pc; N2pc; SPCN; distractor-location suppression; probability cueing
    • Publication Date:
      Date Created: 20230606 Date Completed: 20231023 Latest Revision: 20231113
    • Publication Date:
      20231215
    • Accession Number:
      10.1111/psyp.14351
    • Accession Number:
      37277926