The role of pain modulation pathway and related brain regions in pain.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Yao D;Yao D;Yao D; Chen Y; Chen Y; Chen G; Chen G; Chen G
  • Source:
    Reviews in the neurosciences [Rev Neurosci] 2023 Jun 08; Vol. 34 (8), pp. 899-914. Date of Electronic Publication: 2023 Jun 08 (Print Publication: 2023).
  • Publication Type:
    Journal Article; Review
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: De Gruyter Country of Publication: Germany NLM ID: 8711016 Publication Model: Electronic-Print Cited Medium: Internet ISSN: 2191-0200 (Electronic) Linking ISSN: 03341763 NLM ISO Abbreviation: Rev Neurosci Subsets: MEDLINE
    • Publication Information:
      Publication: 2011- : Berlin : De Gruyter
      Original Publication: London, England : Freund Pub. House Ltd., c1986-
    • Subject Terms:
    • Abstract:
      Pain is a multifaceted process that encompasses unpleasant sensory and emotional experiences. The essence of the pain process is aversion, or perceived negative emotion. Central sensitization plays a significant role in initiating and perpetuating of chronic pain. Melzack proposed the concept of the "pain matrix", in which brain regions associated with pain form an interconnected network, rather than being controlled by a singular brain region. This review aims to investigate distinct brain regions involved in pain and their interconnections. In addition, it also sheds light on the reciprocal connectivity between the ascending and descending pathways that participate in pain modulation. We review the involvement of various brain areas during pain and focus on understanding the connections among them, which can contribute to a better understanding of pain mechanisms and provide opportunities for further research on therapies for improved pain management.
      (© 2023 Walter de Gruyter GmbH, Berlin/Boston.)
    • References:
      Ahrens, S., Wu, M.V., Furlan, A., Hwang, G.R., Paik, R., Li, H., Penzo, M.A., Tollkuhn, J., and Li, B. (2018). A central extended amygdala circuit that modulates anxiety. J. Neurosci. 38: 5567–5583, https://doi.org/10.1523/jneurosci.0705-18.2018 . (PMID: 10.1523/jneurosci.0705-18.2018)
      Allen, H.N., Bobnar, H.J., and Kolber, B.J. (2021). Left and right hemispheric lateralization of the amygdala in pain. Prog. Neurobiol. 196: 101891, https://doi.org/10.1016/j.pneurobio.2020.101891 . (PMID: 10.1016/j.pneurobio.2020.101891)
      Allsop, S.A., Wichmann, R., Mills, F., Burgos-Robles, A., Chang, C.J., Felix-Ortiz, A.C., Vienne, A., Beyeler, A., Izadmehr, E.M., Glober, G., et al.. (2018). Corticoamygdala transfer of socially derived information gates observational learning. Cell 173: 1329–1342, https://doi.org/10.1016/j.cell.2018.04.004 . (PMID: 10.1016/j.cell.2018.04.004)
      Alshelh, Z., Di Pietro, F., Youssef, A.M., Reeves, J.M., Macey, P.M., Vickers, E.R., Peck, C.C., Murray, G.M., and Henderson, L.A. (2016). Chronic neuropathic pain: it’s about the rhythm. J. Neurosci. 36: 1008–1018, https://doi.org/10.1523/jneurosci.2768-15.2016 . (PMID: 10.1523/jneurosci.2768-15.2016)
      Apkarian, A.V., Bushnell, M.C., Treede, R.D., and Zubieta, J.K. (2005). Human brain mechanisms of pain perception and regulation in health and disease. Eur. J. Pain 9: 463–484, https://doi.org/10.1016/j.ejpain.2004.11.001 . (PMID: 10.1016/j.ejpain.2004.11.001)
      Apkarian, V.A., Hashmi, J.A., and Baliki, M.N. (2011). Pain and the brain: specificity and plasticity of the brain in clinical chronic pain. Pain 152: S49–S64, https://doi.org/10.1016/j.pain.2010.11.010 . (PMID: 10.1016/j.pain.2010.11.010)
      Autry, A.E. and Monteggia, L.M. (2012). Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol. Rev. 64: 238–258, https://doi.org/10.1124/pr.111.005108 . (PMID: 10.1124/pr.111.005108)
      Bagley, E.E. and Ingram, S.L. (2020). Endogenous opioid peptides in the descending pain modulatory circuit. Neuropharmacology 173: 108131, https://doi.org/10.1016/j.neuropharm.2020.108131 . (PMID: 10.1016/j.neuropharm.2020.108131)
      Barthas, F., Sellmeijer, J., Hugel, S., Waltisperger, E., Barrot, M., and Yalcin, I. (2015). The anterior cingulate cortex is a critical hub for pain-induced depression. Biol. Psychiatry 77: 236–245, https://doi.org/10.1016/j.biopsych.2014.08.004 . (PMID: 10.1016/j.biopsych.2014.08.004)
      Benarroch, E.E. (2019). Insular cortex: functional complexity and clinical correlations. Neurology 93: 932–938, https://doi.org/10.1212/wnl.0000000000008525 . (PMID: 10.1212/wnl.0000000000008525)
      Benison, A.M., Chumachenko, S., Harrison, J.A., Maier, S.F., Falci, S.P., Watkins, L.R., and Barth, D.S. (2011). Caudal granular insular cortex is sufficient and necessary for the long-term maintenance of allodynic behavior in the rat attributable to mononeuropathy. J. Neurosci. 31: 6317–6328, https://doi.org/10.1523/jneurosci.0076-11.2011 . (PMID: 10.1523/jneurosci.0076-11.2011)
      Beukema, P., Cecil, K.L., Peterson, E., Mann, V.R., Matsushita, M., Takashima, Y., Navlakha, S., and Barth, A.L. (2018). TrpM8-mediated somatosensation in mouse neocortex. J. Comp. Neurol. 526: 1444–1456, https://doi.org/10.1002/cne.24418 . (PMID: 10.1002/cne.24418)
      Bloodgood, D.W., Sugam, J.A., Holmes, A., and Kash, T.L. (2018). Fear extinction requires infralimbic cortex projections to the basolateral amygdala. Transl. Psychiatry 8: 60, https://doi.org/10.1038/s41398-018-0106-x . (PMID: 10.1038/s41398-018-0106-x)
      Bokiniec, P., Zampieri, N., Lewin, G.R., and Poulet, J.F. (2018). The neural circuits of thermal perception. Curr. Opin. Neurobiol. 52: 98–106, https://doi.org/10.1016/j.conb.2018.04.006 . (PMID: 10.1016/j.conb.2018.04.006)
      Bourne, S., Machado, A.G., and Nagel, S.J. (2014). Basic anatomy and physiology of pain pathways. Neurosurg. Clin. N. Am. 25: 629–638, https://doi.org/10.1016/j.nec.2014.06.001 . (PMID: 10.1016/j.nec.2014.06.001)
      Bushnell, M.C., Ceko, M., and Low, L.A. (2013). Cognitive and emotional control of pain and its disruption in chronic pain. Nat. Rev. Neurosci. 14: 502–511, https://doi.org/10.1038/nrn3516 . (PMID: 10.1038/nrn3516)
      Bushnell, M.C., Duncan, G.H., Hofbauer, R.K., Ha, B., Chen, J.I., and Carrier, B. (1999). Pain perception: is there a role for primary somatosensory cortex? Proc. Natl. Acad. Sci. U. S. A. 96: 7705–7709, https://doi.org/10.1073/pnas.96.14.7705 . (PMID: 10.1073/pnas.96.14.7705)
      Butler, R.K., Nilsson-Todd, L., Cleren, C., Léna, I., Garcia, R., and Finn, D.P. (2011). Molecular and electrophysiological changes in the prefrontal cortex-amygdala-dorsal periaqueductal grey pathway during persistent pain state and fear-conditioned analgesia. Physiol. Behav. 104: 1075–1081, https://doi.org/10.1016/j.physbeh.2011.05.028 . (PMID: 10.1016/j.physbeh.2011.05.028)
      Cai, H., Haubensak, W., Anthony, T.E., and Anderson, D.J. (2014). Central amygdala PKC-δ(+) neurons mediate the influence of multiple anorexigenic signals. Nat. Neurosci. 17: 1240–1248, https://doi.org/10.1038/nn.3767 . (PMID: 10.1038/nn.3767)
      Cai, Y.Q., Wang, W., Paulucci-Holthauzen, A., and Pan, Z.Z. (2018). Brain circuits mediating opposing effects on emotion and pain. J. Neurosci. 38: 6340–6349, https://doi.org/10.1523/jneurosci.2780-17.2018 . (PMID: 10.1523/jneurosci.2780-17.2018)
      Cardoso-Cruz, H., Paiva, P., Monteiro, C., and Galhardo, V. (2019). Selective optogenetic inhibition of medial prefrontal glutamatergic neurons reverses working memory deficits induced by neuropathic pain. Pain 160: 805–823, https://doi.org/10.1097/j.pain.0000000000001457 . (PMID: 10.1097/j.pain.0000000000001457)
      Cardoso-Cruz, H., Sousa, M., Vieira, J.B., Lima, D., and Galhardo, V. (2013). Prefrontal cortex and mediodorsal thalamus reduced connectivity is associated with spatial working memory impairment in rats with inflammatory pain. Pain 154: 2397–2406, https://doi.org/10.1016/j.pain.2013.07.020 . (PMID: 10.1016/j.pain.2013.07.020)
      Carlén, M. (2017). What constitutes the prefrontal cortex? Science 358: 478–482, https://doi.org/10.1126/science.aan8868 . (PMID: 10.1126/science.aan8868)
      Cavalcanti, M.R.M., Passos, F.R.S., Monteiro, B.S., Gandhi, S.R., Heimfarth, L., Lima, B.S., Nascimento, Y.M., Duarte, M.C., Araujo, A.A.S., Menezes, I.R.A., et al.. (2021). HPLC-DAD-UV analysis, anti-inflammatory and anti-neuropathic effects of methanolic extract of Sideritis bilgeriana (lamiaceae) by NF-κB, TNF-α, IL-1β and IL-6 involvement. J. Ethnopharmacol. 265: 113338, https://doi.org/10.1016/j.jep.2020.113338 . (PMID: 10.1016/j.jep.2020.113338)
      Chao, T.H., Chen, J.H., and Yen, C.T. (2018). Plasticity changes in forebrain activity and functional connectivity during neuropathic pain development in rats with sciatic spared nerve injury. Mol. Brain 11: 55, https://doi.org/10.1186/s13041-018-0398-z . (PMID: 10.1186/s13041-018-0398-z)
      Chen, J.I., Ha, B., Bushnell, M.C., Pike, B., and Duncan, G.H. (2002). Differentiating noxious- and innocuous-related activation of human somatosensory cortices using temporal analysis of fMRI. J. Neurophysiol. 88: 464–474, https://doi.org/10.1152/jn.2002.88.1.464 . (PMID: 10.1152/jn.2002.88.1.464)
      Chen, Q. and Heinricher, M.M. (2022). Shifting the balance: how top-down and bottom-up input modulate pain via the rostral ventromedial medulla. Front. Pain Res. (Lausanne) 3: 932476, https://doi.org/10.3389/fpain.2022.932476 . (PMID: 10.3389/fpain.2022.932476)
      Chen, T., Taniguchi, W., Chen, Q.Y., Tozaki-Saitoh, H., Song, Q., Liu, R.H., Koga, K., Matsuda, T., Kaito-Sugimura, Y., Wang, J., et al.. (2018). Top-down descending facilitation of spinal sensory excitatory transmission from the anterior cingulate cortex. Nat. Commun. 9: 1886, https://doi.org/10.1038/s41467-018-04309-2 . (PMID: 10.1038/s41467-018-04309-2)
      Chen, Y.H., Wu, J.L., Hu, N.Y., Zhuang, J.P., Li, W.P., Zhang, S.R., Li, X.W., Yang, J.M., and Gao, T.M. (2021). Distinct projections from the infralimbic cortex exert opposing effects in modulating anxiety and fear. J. Clin. Invest. 131: 2–4, https://doi.org/10.1172/jci145692 . (PMID: 10.1172/jci145692)
      Chiang, M.C., Bowen, A., Schier, L.A., Tupone, D., Uddin, O., and Heinricher, M.M. (2019). Parabrachial complex: a hub for pain and aversion. J. Neurosci. 39: 8225–8230, https://doi.org/10.1523/jneurosci.1162-19.2019 . (PMID: 10.1523/jneurosci.1162-19.2019)
      Chiang, M.C., Nguyen, E.K., Canto-Bustos, M., Papale, A.E., Oswald, A.M., and Ross, S.E. (2020). Divergent neural pathways emanating from the lateral parabrachial nucleus mediate distinct components of the pain response. Neuron 106: 927–939, https://doi.org/10.1016/j.neuron.2020.03.014 . (PMID: 10.1016/j.neuron.2020.03.014)
      Ching, Y.Y., Wang, C., Tay, T., Loke, Y.M., Tang, P.H., Sng, B.L., and Zhou, J. (2018). Altered sensory insular connectivity in chronic postsurgical pain patients. Front. Hum. Neurosci. 12: 483, https://doi.org/10.3389/fnhum.2018.00483 . (PMID: 10.3389/fnhum.2018.00483)
      Coghill, R.C., Sang, C.N., Maisog, J.M., and Iadarola, M.J. (1999). Pain intensity processing within the human brain: a bilateral, distributed mechanism. J. Neurophysiol. 82: 1934–1943, https://doi.org/10.1152/jn.1999.82.4.1934 . (PMID: 10.1152/jn.1999.82.4.1934)
      Cohen, S.P. and Mao, J. (2014). Neuropathic pain: mechanisms and their clinical implications. Brit. Med. J. 348: f7656, https://doi.org/10.1136/bmj.f7656 . (PMID: 10.1136/bmj.f7656)
      Cohen, S.P., Vase, L., and Hooten, W.M. (2021). Chronic pain: an update on burden, best practices, and new advances. Lancet 397: 2082–2097, https://doi.org/10.1016/s0140-6736(21)00393-7 . (PMID: 10.1016/s0140-6736(21)00393-7)
      Cottam, W.J., Iwabuchi, S.J., Drabek, M.M., Reckziegel, D., and Auer, D.P. (2018). Altered connectivity of the right anterior insula drives the pain connectome changes in chronic knee osteoarthritis. Pain 159: 929–938, https://doi.org/10.1097/j.pain.0000000000001209 . (PMID: 10.1097/j.pain.0000000000001209)
      Craig, A.D. (2002). How do you feel? Interoception: the sense of the physiological condition of the body. Nat. Rev. Neurosci. 3: 655–666, https://doi.org/10.1038/nrn894 . (PMID: 10.1038/nrn894)
      Craig, A.D. (2003). Interoception: the sense of the physiological condition of the body. Curr. Opin. Neurobiol. 13: 500–505, https://doi.org/10.1016/s0959-4388(03)00090-4 . (PMID: 10.1016/s0959-4388(03)00090-4)
      Craig, A.D. (2014). Topographically organized projection to posterior insular cortex from the posterior portion of the ventral medial nucleus in the long-tailed macaque monkey. J. Comp. Neurol. 522: 36–63, https://doi.org/10.1002/cne.23425 . (PMID: 10.1002/cne.23425)
      Dale, J., Zhou, H., Zhang, Q., Martinez, E., Hu, S., Liu, K., Urien, L., Chen, Z., and Wang, J. (2018). Scaling up cortical control inhibits pain. Cell Rep. 23: 1301–1313, https://doi.org/10.1016/j.celrep.2018.03.139 . (PMID: 10.1016/j.celrep.2018.03.139)
      David-Pereira, A., Puga, S., Gonçalves, S., Amorim, D., Silva, C., Pertovaara, A., Almeida, A., and Pinto-Ribeiro, F. (2016). Metabotropic glutamate 5 receptor in the infralimbic cortex contributes to descending pain facilitation in healthy and arthritic animals. Neuroscience 312: 108–119, https://doi.org/10.1016/j.neuroscience.2015.10.060 . (PMID: 10.1016/j.neuroscience.2015.10.060)
      David-Pereira, A., Sagalajev, B., Wei, H., Almeida, A., Pertovaara, A., and Pinto-Ribeiro, F. (2017). The medullary dorsal reticular nucleus as a relay for descending pronociception induced by the mGluR5 in the rat infralimbic cortex. Neuroscience 349: 341–354, https://doi.org/10.1016/j.neuroscience.2017.02.046 . (PMID: 10.1016/j.neuroscience.2017.02.046)
      De Ridder, D., Adhia, D., and Vanneste, S. (2021). The anatomy of pain and suffering in the brain and its clinical implications. Neurosci. Biobehav. Rev. 130: 125–146, https://doi.org/10.1016/j.neubiorev.2021.08.013 . (PMID: 10.1016/j.neubiorev.2021.08.013)
      De Ridder, D. and Vanneste, S. (2017). Occipital nerve field transcranial direct current stimulation normalizes imbalance between pain detecting and pain inhibitory pathways in fibromyalgia. Neurotherapeutics 14: 484–501, https://doi.org/10.1007/s13311-016-0493-8 . (PMID: 10.1007/s13311-016-0493-8)
      Devoize, L., Alvarez, P., Monconduit, L., and Dallel, R. (2011). Representation of dynamic mechanical allodynia in the ventral medial prefrontal cortex of trigeminal neuropathic rats. Eur. J. Pain 15: 676–682, https://doi.org/10.1016/j.ejpain.2010.11.017 . (PMID: 10.1016/j.ejpain.2010.11.017)
      Donaldson, L.F. and Lumb, B.M. (2017). Top-down control of pain. J. Physiol. 595: 4139–4140, https://doi.org/10.1113/jp273361 . (PMID: 10.1113/jp273361)
      Drake, R.A., Steel, K.A., Apps, R., Lumb, B.M., and Pickering, A.E. (2021). Loss of cortical control over the descending pain modulatory system determines the development of the neuropathic pain state in rats. Elife 10: 4–7, https://doi.org/10.7554/elife.65156 . (PMID: 10.7554/elife.65156)
      Dum, R.P., Levinthal, D.J., and Strick, P.L. (2009). The spinothalamic system targets motor and sensory areas in the cerebral cortex of monkeys. J. Neurosci. 29: 14223–14235, https://doi.org/10.1523/jneurosci.3398-09.2009 . (PMID: 10.1523/jneurosci.3398-09.2009)
      Eippert, F., Bingel, U., Schoell, E.D., Yacubian, J., Klinger, R., Lorenz, J., and Büchel, C. (2009). Activation of the opioidergic descending pain control system underlies placebo analgesia. Neuron 63: 533–543, https://doi.org/10.1016/j.neuron.2009.07.014 . (PMID: 10.1016/j.neuron.2009.07.014)
      Eto, K., Ishibashi, H., Yoshimura, T., Watanabe, M., Miyamoto, A., Ikenaka, K., Moorhouse, A.J., and Nabekura, J. (2012). Enhanced GABAergic activity in the mouse primary somatosensory cortex is insufficient to alleviate chronic pain behavior with reduced expression of neuronal potassium-chloride cotransporter. J. Neurosci. 32: 16552–16559, https://doi.org/10.1523/jneurosci.2104-12.2012 . (PMID: 10.1523/jneurosci.2104-12.2012)
      Fields, H. (2004). State-dependent opioid control of pain. Nat. Rev. Neurosci. 5: 565–575, https://doi.org/10.1038/nrn1431 . (PMID: 10.1038/nrn1431)
      Fields, H.L. (2000). Pain modulation: expectation, opioid analgesia and virtual pain. Prog. Brain Res. 122: 245–253, https://doi.org/10.1016/s0079-6123(08)62143-3 . (PMID: 10.1016/s0079-6123(08)62143-3)
      François, A., Low, S.A., Sypek, E.I., Christensen, A.J., Sotoudeh, C., Beier, K.T., Ramakrishnan, C., Ritola, K.D., Sharif-Naeini, R., Deisseroth, K., et al.. (2017). A Brainstem-spinal cord inhibitory circuit for mechanical pain modulation by GABA and enkephalins. Neuron 93: 822–839, https://doi.org/10.1016/j.neuron.2017.01.008 . (PMID: 10.1016/j.neuron.2017.01.008)
      Friebel, U., Eickhoff, S.B., and Lotze, M. (2011). Coordinate-based meta-analysis of experimentally induced and chronic persistent neuropathic pain. Neuroimage 58: 1070–1080, https://doi.org/10.1016/j.neuroimage.2011.07.022 . (PMID: 10.1016/j.neuroimage.2011.07.022)
      Frøkjær, J.B., Olesen, S.S., Graversen, C., Andresen, T., Lelic, D., and Drewes, A.M. (2018). Neuroimaging of the human visceral pain system-a methodological review. Scand. J. Pain 2: 95–104, https://doi.org/10.1016/j.sjpain.2011.02.006 . (PMID: 10.1016/j.sjpain.2011.02.006)
      Frot, M., Mauguière, F., Magnin, M., and Garcia-Larrea, L. (2008). Parallel processing of nociceptive A-delta inputs in SII and midcingulate cortex in humans. J. Neurosci. 28: 944–952, https://doi.org/10.1523/jneurosci.2934-07.2008 . (PMID: 10.1523/jneurosci.2934-07.2008)
      Fuchs, P.N., Peng, Y.B., Boyette-Davis, J.A., and Uhelski, M.L. (2014). The anterior cingulate cortex and pain processing. Front. Integr. Neurosci. 8: 35, https://doi.org/10.3389/fnint.2014.00035 . (PMID: 10.3389/fnint.2014.00035)
      Galhardoni, R., Aparecida da Silva, V., García-Larrea, L., Dale, C., Baptista, A.F., Barbosa, L.M., Menezes, L.M.B., de Siqueira, Srdt, Valério, F. , Rosi, J.Jr., et al.. (2019). Insular and anterior cingulate cortex deep stimulation for central neuropathic pain: disassembling the percept of pain. Neurology 92: e2165–e75, https://doi.org/10.1212/wnl.0000000000007396 . (PMID: 10.1212/wnl.0000000000007396)
      Gao, S.H., Wen, H.Z., Shen, L.L., Zhao, Y.D., and Ruan, H.Z. (2016). Activation of mGluR1 contributes to neuronal hyperexcitability in the rat anterior cingulate cortex via inhibition of HCN channels. Neuropharmacology 105: 361–377, https://doi.org/10.1016/j.neuropharm.2016.01.036 . (PMID: 10.1016/j.neuropharm.2016.01.036)
      Garro-Martínez, E., Fullana, M.N., Florensa-Zanuy, E., Senserrich, J., Paz, V., Ruiz-Bronchal, E., Adell, A., Castro, E., Díaz, Á., Pazos, Á, et al. (2021). mTOR knockdown in the infralimbic cortex evokes a depressive-like state in mouse. Int. J. Mol. Sci. 22: 1–5, https://doi.org/10.3390/ijms22168671 . (PMID: 10.3390/ijms22168671)
      Ge, J., Cai, Y., and Pan, Z.Z. (2022). Synaptic plasticity in two cell types of central amygdala for regulation of emotion and pain. Front. Cell Neurosci. 16: 997360, https://doi.org/10.3389/fncel.2022.997360 . (PMID: 10.3389/fncel.2022.997360)
      Giesecke, T., Gracely, R.H., Grant, M.A., Nachemson, A., Petzke, F., Williams, D.A., and Clauw, D.J. (2004). Evidence of augmented central pain processing in idiopathic chronic low back pain. Arthritis Rheum 50: 613–623, https://doi.org/10.1002/art.20063 . (PMID: 10.1002/art.20063)
      Goadsby, P.J., Holland, P.R., Martins-Oliveira, M., Hoffmann, J., Schankin, C., and Akerman, S. (2017). Pathophysiology of migraine: a disorder of sensory processing. Physiol. Rev. 97: 553–622, https://doi.org/10.1152/physrev.00034.2015 . (PMID: 10.1152/physrev.00034.2015)
      Griessner, J., Pasieka, M., Böhm, V., Grössl, F., Kaczanowska, J., Pliota, P., Kargl, D., Werner, B., Kaouane, N., Strobelt, S., et al.. (2021). Central amygdala circuit dynamics underlying the benzodiazepine anxiolytic effect. Mol. Psychiatry 26: 534–544, https://doi.org/10.1038/s41380-018-0310-3 . (PMID: 10.1038/s41380-018-0310-3)
      Gustin, S.M., Wrigley, P.J., Youssef, A.M., McIndoe, L., Wilcox, S.L., Rae, C.D., Edden, R.A.E., Siddall, P.J., and Henderson, L.A. (2014). Thalamic activity and biochemical changes in individuals with neuropathic pain after spinal cord injury. Pain 155: 1027–1036, https://doi.org/10.1016/j.pain.2014.02.008 . (PMID: 10.1016/j.pain.2014.02.008)
      Han, J., Cha, M., Kwon, M., Hong, S.K., Bai, S.J., and Lee, B.H. (2016). In vivo voltage-sensitive dye imaging of the insular cortex in nerve-injured rats. Neurosci. Lett. 634: 146–152, https://doi.org/10.1016/j.neulet.2016.10.015 . (PMID: 10.1016/j.neulet.2016.10.015)
      Hao, S., Yang, H., Wang, X., He, Y., Xu, H., Wu, X., Pan, L., Liu, Y., Lou, H., Xu, H., et al.. (2019). The lateral hypothalamic and BNST GABAergic projections to the anterior ventrolateral periaqueductal gray regulate feeding. Cell Rep. 28: 616–624, https://doi.org/10.1016/j.celrep.2019.06.051 . (PMID: 10.1016/j.celrep.2019.06.051)
      Hashmi, J.A., Baliki, M.N., Huang, L., Baria, A.T., Torbey, S., Hermann, K.M., Schnitzer, T.J., and Apkarian, A.V. (2013). Shape shifting pain: chronification of back pain shifts brain representation from nociceptive to emotional circuits. Brain 136: 2751–2768, https://doi.org/10.1093/brain/awt211 . (PMID: 10.1093/brain/awt211)
      Heinricher, M.M., Morgan, M.M., Tortorici, V., and Fields, H.L. (1994). Disinhibition of off-cells and antinociception produced by an opioid action within the rostral ventromedial medulla. Neuroscience 63: 279–288, https://doi.org/10.1016/0306-4522(94)90022-1 . (PMID: 10.1016/0306-4522(94)90022-1)
      Heinricher, M.M., Tavares, I., Leith, J.L., and Lumb, B.M. (2009). Descending control of nociception: specificity, recruitment and plasticity. Brain Res. Rev. 60: 214–225, https://doi.org/10.1016/j.brainresrev.2008.12.009 . (PMID: 10.1016/j.brainresrev.2008.12.009)
      Hogri, R., Teuchmann, H.L., Heinke, B., Holzinger, R., Trofimova, L., and Sandkühler, J. (2022). GABAergic CaMKIIα+ amygdala output attenuates pain and modulates emotional-motivational behavior via parabrachial inhibition. J. Neurosci. 42: 5373–5388, https://doi.org/10.1523/jneurosci.2067-21.2022 . (PMID: 10.1523/jneurosci.2067-21.2022)
      Hon, O.J., DiBerto, J.F., Mazzone, C.M., Sugam, J., Bloodgood, D.W., Hardaway, J.A., Husain, M., Kendra, A., McCall, N.M., Lopez, A.J., et al.. (2022). Serotonin modulates an inhibitory input to the central amygdala from the ventral periaqueductal gray. Neuropsychopharmacology 47: 2194–2204, https://doi.org/10.1038/s41386-022-01392-4 . (PMID: 10.1038/s41386-022-01392-4)
      Hsieh, P.C., Tseng, M.T., Chao, C.C., Lin, Y.H., Tseng, W.I., Liu, K.H., Chiang, M.C., and Hsieh, S.T. (2015). Imaging signatures of altered brain responses in small-fiber neuropathy: reduced functional connectivity of the limbic system after peripheral nerve degeneration. Pain 156: 904–916, https://doi.org/10.1097/j.pain.0000000000000128 . (PMID: 10.1097/j.pain.0000000000000128)
      Huang, D., Grady, F.S., Peltekian, L., Laing, J.J., and Geerling, J.C. (2021). Efferent projections of CGRP/Calca-expressing parabrachial neurons in mice. J. Comp. Neurol. 529: 2911–2957, https://doi.org/10.1002/cne.25136 . (PMID: 10.1002/cne.25136)
      Huang, J., Gadotti, V.M., Chen, L., Souza, I.A., Huang, S., Wang, D., Ramakrishnan, C., Deisseroth, K., Zhang, Z., and Zamponi, G.W. (2019). A neuronal circuit for activating descending modulation of neuropathic pain. Nat. Neurosci. 22: 1659–1668, https://doi.org/10.1038/s41593-019-0481-5 . (PMID: 10.1038/s41593-019-0481-5)
      Hwang, K., Bertolero, M.A., Liu, W.B., and D’Esposito, M. (2017). The Human thalamus is an integrative hub for functional brain networks. J. Neurosci. 37: 5594–5607, https://doi.org/10.1523/jneurosci.0067-17.2017 . (PMID: 10.1523/jneurosci.0067-17.2017)
      Inami, C., Tanihira, H., Kikuta, S., Ogasawara, O., Sobue, K., Kume, K., Osanai, M., and Ohsawa, M. (2019). Visualization of brain activity in a neuropathic pain model using quantitative activity-dependent manganese magnetic resonance imaging. Front. Neural. Circuits 13: 74, https://doi.org/10.3389/fncir.2019.00074 . (PMID: 10.3389/fncir.2019.00074)
      Jarrin, S., Pandit, A., Roche, M., and Finn, D.P. (2020). Differential role of anterior cingulate cortical glutamatergic neurons in pain-related aversion learning and nociceptive behaviors in male and female rats. Front. Behav. Neurosci. 14: 139, https://doi.org/10.3389/fnbeh.2020.00139 . (PMID: 10.3389/fnbeh.2020.00139)
      Jhang, J., Lee, H., Kang, M.S., Lee, H.S., Park, H., and Han, J.H. (2018). Anterior cingulate cortex and its input to the basolateral amygdala control innate fear response. Nat. Commun. 9: 2744, https://doi.org/10.1038/s41467-018-05090-y . (PMID: 10.1038/s41467-018-05090-y)
      Ji, G., Sun, H., Fu, Y., Li, Z., Pais-Vieira, M., Galhardo, V., and Neugebauer, V. (2010). Cognitive impairment in pain through amygdala-driven prefrontal cortical deactivation. J. Neurosci. 30: 5451–5464, https://doi.org/10.1523/jneurosci.0225-10.2010 . (PMID: 10.1523/jneurosci.0225-10.2010)
      Jiang, Z.C., Pan, Q., Zheng, C., Deng, X.F., Wang, J.Y., and Luo, F. (2014). Inactivation of the prelimbic rather than infralimbic cortex impairs acquisition and expression of formalin-induced conditioned place avoidance. Neurosci. Lett. 569: 89–93, https://doi.org/10.1016/j.neulet.2014.03.074 . (PMID: 10.1016/j.neulet.2014.03.074)
      Johansen, J.P. and Fields, H.L. (2004). Glutamatergic activation of anterior cingulate cortex produces an aversive teaching signal. Nat. Neurosci. 7: 398–403, https://doi.org/10.1038/nn1207 . (PMID: 10.1038/nn1207)
      Jones, A.F. and Sheets, P.L. (2020). Sex-specific disruption of distinct mPFC inhibitory neurons in spared-nerve injury model of neuropathic pain. Cell Rep. 31: 107729, https://doi.org/10.1016/j.celrep.2020.107729 . (PMID: 10.1016/j.celrep.2020.107729)
      Joo, S.Y., Park, C.H., Cho, Y.S., Seo, C.H., and Ohn, S.H. (2021). Plastic changes in pain and motor network induced by chronic burn pain. J. Clin. Med. 10: 6–8, https://doi.org/10.3390/jcm10122592 . (PMID: 10.3390/jcm10122592)
      Juarez-Salinas, D.L., Braz, J.M., Etlin, A., Gee, S., Sohal, V., and Basbaum, A.I. (2019). GABAergic cell transplants in the anterior cingulate cortex reduce neuropathic pain aversiveness. Brain 142: 2655–2669, https://doi.org/10.1093/brain/awz203 . (PMID: 10.1093/brain/awz203)
      Kato, F., Sugimura, Y.K., and Takahashi, Y. (2018). Pain-associated neural plasticity in the parabrachial to central amygdala circuit : pain changes the brain, and the brain changes the pain. Adv. Exp. Med. Biol. 1099: 157–166, https://doi.org/10.1007/978-981-13-1756-9_14 . (PMID: 10.1007/978-981-13-1756-9_14)
      Kelly, C.J., Huang, M., Meltzer, H., and Martina, M. (2016). Reduced glutamatergic currents and dendritic branching of layer 5 pyramidal cells contribute to medial prefrontal cortex deactivation in a rat model of neuropathic pain. Front. Cell Neurosci. 10: 133, https://doi.org/10.3389/fncel.2016.00133 . (PMID: 10.3389/fncel.2016.00133)
      Kelly, C.J. and Martina, M. (2018). Circuit-selective properties of glutamatergic inputs to the rat prelimbic cortex and their alterations in neuropathic pain. Brain Struct. Funct. 223: 2627–2639, https://doi.org/10.1007/s00429-018-1648-7 . (PMID: 10.1007/s00429-018-1648-7)
      Kikkert, S., Mezue, M., O’Shea, J., Henderson Slater, D., Johansen-Berg, H., Tracey, I., and Makin, T.R. (2019). Neural basis of induced phantom limb pain relief. Ann. Neurol. 85: 59–73, https://doi.org/10.1002/ana.25371 . (PMID: 10.1002/ana.25371)
      Kim, J., Pignatelli, M., Xu, S., Itohara, S., and Tonegawa, S. (2016). Antagonistic negative and positive neurons of the basolateral amygdala. Nat. Neurosci. 19: 1636–1646, https://doi.org/10.1038/nn.4414 . (PMID: 10.1038/nn.4414)
      Kim, J., Zhang, X., Muralidhar, S., LeBlanc, S.A., and Tonegawa, S. (2017). Basolateral to central amygdala neural circuits for appetitive behaviors. Neuron 93: 1464–1479, https://doi.org/10.1016/j.neuron.2017.02.034 . (PMID: 10.1016/j.neuron.2017.02.034)
      Kim, S.K., Hayashi, H., Ishikawa, T., Shibata, K., Shigetomi, E., Shinozaki, Y., Inada, H., Roh, S.E., Kim, S.J., Lee, G., et al.. (2016). Cortical astrocytes rewire somatosensory cortical circuits for peripheral neuropathic pain. J. Clin. Invest. 126: 1983–1997, https://doi.org/10.1172/jci82859 . (PMID: 10.1172/jci82859)
      Kim, W., Kim, S.K., and Nabekura, J. (2017). Functional and structural plasticity in the primary somatosensory cortex associated with chronic pain. J. Neurochem. 141: 499–506, https://doi.org/10.1111/jnc.14012 . (PMID: 10.1111/jnc.14012)
      Kiritoshi, T., Ji, G., and Neugebauer, V. (2016). Rescue of impaired mGluR5-driven endocannabinoid signaling restores prefrontal cortical output to inhibit pain in arthritic rats. J. Neurosci. 36: 837–850, https://doi.org/10.1523/jneurosci.4047-15.2016 . (PMID: 10.1523/jneurosci.4047-15.2016)
      Koga, K., Descalzi, G., Chen, T., Ko, H.G., Lu, J., Li, S., Son, J., Kim, T., Kwak, C., Huganir, R.L., et al.. (2015). Coexistence of two forms of LTP in ACC provides a synaptic mechanism for the interactions between anxiety and chronic pain. Neuron 85: 377–389, https://doi.org/10.1016/j.neuron.2015.05.016 . (PMID: 10.1016/j.neuron.2015.05.016)
      Kong, Q.M., Qiao, H., Liu, C.Z., Zhang, P., Li, K., Wang, L., Li, J.T., Su, Y., Li, K.Q., Yan, C.G., et al.. (2018). Aberrant intrinsic functional connectivity in thalamo-cortical networks in major depressive disorder. CNS Neurosci. Ther. 24: 1063–1072, https://doi.org/10.1111/cns.12831 . (PMID: 10.1111/cns.12831)
      Koutsikou, S., Watson, T.C., Crook, J.J., Leith, J.L., Lawrenson, C.L., Apps, R., and Lumb, B.M. (2015). The periaqueductal gray orchestrates sensory and motor circuits at multiple levels of the neuraxis. J. Neurosci. 35: 14132–14147, https://doi.org/10.1523/jneurosci.0261-15.2015 . (PMID: 10.1523/jneurosci.0261-15.2015)
      Krout, K.E., Jansen, A.S., and Loewy, A.D. (1998). Periaqueductal gray matter projection to the parabrachial nucleus in rat. J. Comp. Neurol. 401: 437–454, https://doi.org/10.1002/(sici)1096-9861(19981130)401:4<437::aid-cne2>3.0.co;2-5 .
      Kuner, R. and Kuner, T. (2021). Cellular circuits in the brain and their modulation in acute and chronic pain. Physiol. Rev. 101: 213–258, https://doi.org/10.1152/physrev.00040.2019 . (PMID: 10.1152/physrev.00040.2019)
      Kwon, M., Altin, M., Duenas, H., and Alev, L. (2014). The role of descending inhibitory pathways on chronic pain modulation and clinical implications. Pain Pract. 14: 656–667, https://doi.org/10.1111/papr.12145 . (PMID: 10.1111/papr.12145)
      Lanius, R.A., Boyd, J.E., McKinnon, M.C., Nicholson, A.A., Frewen, P., Vermetten, E., Jetly, R., and Spiegel, D. (2018). A review of the neurobiological basis of trauma-related dissociation and its relation to cannabinoid- and opioid-mediated stress response: a transdiagnostic, translational approach. Curr. Psychiatry Rep. 20: 118, https://doi.org/10.1007/s11920-018-0983-y . (PMID: 10.1007/s11920-018-0983-y)
      Lau, B.K. and Vaughan, C.W. (2014). Descending modulation of pain: the GABA disinhibition hypothesis of analgesia. Curr. Opin. Neurobiol. 29: 159–164, https://doi.org/10.1016/j.conb.2014.07.010 . (PMID: 10.1016/j.conb.2014.07.010)
      Laubach, M., Amarante, L.M., Swanson, K., and White, S.R. (2018). What, if anything, is rodent prefrontal cortex? eNeuro 5: 5–6, https://doi.org/10.1523/eneuro.0315-18.2018 . (PMID: 10.1523/eneuro.0315-18.2018)
      LeDoux, J. (2007). The amygdala. Curr. Biol. 17: R868–R874, https://doi.org/10.1016/j.cub.2007.08.005 . (PMID: 10.1016/j.cub.2007.08.005)
      Lee, J.Y., You, T., Lee, C.H., Im, G.H., Seo, H., Woo, C.W., and Kim, S.G. (2022). Role of anterior cingulate cortex inputs to periaqueductal gray for pain avoidance. Curr. Biol. 32: 2834–2847, https://doi.org/10.1016/j.cub.2022.04.090 . (PMID: 10.1016/j.cub.2022.04.090)
      Lenz, F.A., Weiss, N., Ohara, S., Lawson, C., and Greenspan, J.D. (2004). The role of the thalamus in pain. Suppl. Clin. Neurophysiol. 57: 50–61, https://doi.org/10.1016/s1567-424x(09)70342-3 . (PMID: 10.1016/s1567-424x(09)70342-3)
      Li, X.Y., Ko, H.G., Chen, T., Descalzi, G., Koga, K., Wang, H., Kim, S.S., Shang, Y., Kwak, C., Park, S.W., et al.. (2010). Alleviating neuropathic pain hypersensitivity by inhibiting PKMzeta in the anterior cingulate cortex. Science 330: 1400–1404, https://doi.org/10.1126/science.1191792 . (PMID: 10.1126/science.1191792)
      Liang, S.H., Zhao, W.J., Yin, J.B., Chen, Y.B., Li, J.N., Feng, B., Lu, Y.C., Wang, J., Dong, Y.L., and Li, Y.Q. (2020). A neural circuit from thalamic paraventricular nucleus to central amygdala for the facilitation of neuropathic pain. J. Neurosci. 40: 7837–7854, https://doi.org/10.1523/jneurosci.2487-19.2020 . (PMID: 10.1523/jneurosci.2487-19.2020)
      Llinás, R.R., Ribary, U., Jeanmonod, D., Kronberg, E., and Mitra, P.P. (1999). Thalamocortical dysrhythmia: a neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc. Natl. Acad. Sci. U. S. A. 96: 15222–15227, https://doi.org/10.1073/pnas.96.26.15222 . (PMID: 10.1073/pnas.96.26.15222)
      Loeser, J.D. and Melzack, R. (1999). Pain: an overview. Lancet 353: 1607–1609, https://doi.org/10.1016/s0140-6736(99)01311-2 . (PMID: 10.1016/s0140-6736(99)01311-2)
      Lu, C., Yang, T., Zhao, H., Zhang, M., Meng, F., Fu, H., Xie, Y., and Xu, H. (2016). Insular cortex is critical for the perception, modulation, and chronification of pain. Neurosci. Bull. 32: 191–201, https://doi.org/10.1007/s12264-016-0016-y . (PMID: 10.1007/s12264-016-0016-y)
      Luongo, L., de Novellis, V., Gatta, L., Palazzo, E., Vita, D., Guida, F., Giordano, C., Siniscalco, D., Marabese, I., De Chiaro, M., et al.. (2013). Role of metabotropic glutamate receptor 1 in the basolateral amygdala-driven prefrontal cortical deactivation in inflammatory pain in the rat. Neuropharmacology 66: 317–329, https://doi.org/10.1016/j.neuropharm.2012.05.047 . (PMID: 10.1016/j.neuropharm.2012.05.047)
      Maihöfner, C. and Handwerker, H.O. (2005). Differential coding of hyperalgesia in the human brain: a functional MRI study. Neuroimage 28: 996–1006, https://doi.org/10.1016/j.neuroimage.2005.06.049 . (PMID: 10.1016/j.neuroimage.2005.06.049)
      Mao, C.P., Yang, H.J., Yang, Q.X., Sun, H.H., Zhang, G.R., and Zhang, Q.J. (2022). Altered amygdala-prefrontal connectivity in chronic nonspecific low back pain: resting-state fMRI and dynamic causal modelling study. Neuroscience 482: 18–29, https://doi.org/10.1016/j.neuroscience.2021.12.003 . (PMID: 10.1016/j.neuroscience.2021.12.003)
      Marek, R., Xu, L., Sullivan, R.K.P., and Sah, P. (2018). Excitatory connections between the prelimbic and infralimbic medial prefrontal cortex show a role for the prelimbic cortex in fear extinction. Nat. Neurosci. 21: 654–658, https://doi.org/10.1038/s41593-018-0137-x . (PMID: 10.1038/s41593-018-0137-x)
      Martenson, M.E., Cetas, J.S., and Heinricher, M.M. (2009). A possible neural basis for stress-induced hyperalgesia. Pain 142: 236–244, https://doi.org/10.1016/j.pain.2009.01.011 . (PMID: 10.1016/j.pain.2009.01.011)
      Matsumoto, N., Bester, H., Menendez, L., Besson, J.M., and Bernard, J.F. (1996). Changes in the responsiveness of parabrachial neurons in the arthritic rat: an electrophysiological study. J. Neurophysiol. 76: 4113–4126, https://doi.org/10.1152/jn.1996.76.6.4113 . (PMID: 10.1152/jn.1996.76.6.4113)
      May, A. (2008). Chronic pain may change the structure of the brain. Pain 137: 7–15, https://doi.org/10.1016/j.pain.2008.02.034 . (PMID: 10.1016/j.pain.2008.02.034)
      May, A. (2011). Structural brain imaging: a window into chronic pain. Neuroscientist 17: 209–220, https://doi.org/10.1177/1073858410396220 . (PMID: 10.1177/1073858410396220)
      Mazzitelli, M., Marshall, K., Pham, A., Ji, G., and Neugebauer, V. (2021). Optogenetic manipulations of amygdala neurons modulate spinal nociceptive processing and behavior under normal conditions and in an arthritis pain model. Front. Pharmacol. 12: 668337, https://doi.org/10.3389/fphar.2021.668337 . (PMID: 10.3389/fphar.2021.668337)
      Mazzitelli, M., Yakhnitsa, V., Neugebauer, B., and Neugebauer, V. (2022). Optogenetic manipulations of CeA-CRF neurons modulate pain- and anxiety-like behaviors in neuropathic pain and control rats. Neuropharmacology 210: 109031, https://doi.org/10.1016/j.neuropharm.2022.109031 . (PMID: 10.1016/j.neuropharm.2022.109031)
      Mazzola, L., Isnard, J., Peyron, R., Guénot, M., and Mauguière, F. (2009). Somatotopic organization of pain responses to direct electrical stimulation of the human insular cortex. Pain 146: 99–104, https://doi.org/10.1016/j.pain.2009.07.014 . (PMID: 10.1016/j.pain.2009.07.014)
      McPherson, K.B. and Ingram, S.L. (2022). Cellular and circuit diversity determines the impact of endogenous opioids in the descending pain modulatory pathway. Front. Syst. Neurosci. 16: 963812, https://doi.org/10.3389/fnsys.2022.963812 . (PMID: 10.3389/fnsys.2022.963812)
      Meda, K.S., Patel, T., Braz, J.M., Malik, R., Turner, M.L., Seifikar, H., Basbaum, A.I., and Sohal, V.S. (2019). Microcircuit mechanisms through which mediodorsal thalamic input to anterior cingulate cortex exacerbates pain-related aversion. Neuron 102: 944–959, https://doi.org/10.1016/j.neuron.2019.03.042 . (PMID: 10.1016/j.neuron.2019.03.042)
      Melzack, R. (1999). From the gate to the neuromatrix. Pain (Suppl. 6) 3: S121–S26, https://doi.org/10.1016/s0304-3959(99)00145-1 . (PMID: 10.1016/s0304-3959(99)00145-1)
      Melzack, R. (2001). Pain and the neuromatrix in the brain. J Dent Educ 65: 1378–1382, https://doi.org/10.1002/j.0022-0337.2001.65.12.tb03497.x . (PMID: 10.1002/j.0022-0337.2001.65.12.tb03497.x)
      Meng, X., Yue, L., Liu, A., Tao, W., Shi, L., Zhao, W., Wu, Z., Zhang, Z., Wang, L., Zhang, X., et al.. (2022). Distinct basolateral amygdala excitatory inputs mediate the somatosensory and aversive-affective components of pain. J. Biol. Chem. 298: 102207, https://doi.org/10.1016/j.jbc.2022.102207 . (PMID: 10.1016/j.jbc.2022.102207)
      Millan, M.J. (2002). Descending control of pain. Prog. Neurobiol. 66: 355–474, https://doi.org/10.1016/s0301-0082(02)00009-6 . (PMID: 10.1016/s0301-0082(02)00009-6)
      Miller Neilan, R., Majetic, G., Gil-Silva, M., Adke, A.P., Carrasquillo, Y., and Kolber, B.J. (2021). Agent-based modeling of the central amygdala and pain using cell-type specific physiological parameters. PLoS Comput. Biol. 17: e1009097, https://doi.org/10.1371/journal.pcbi.1009097 . (PMID: 10.1371/journal.pcbi.1009097)
      Monroe, T.B., Fillingim, R.B., Bruehl, S.P., Rogers, B.P., Dietrich, M.S., Gore, J.C., Atalla, S.W., and Cowan, R.L. (2018). Sex differences in brain regions modulating pain among older adults: a cross-sectional resting state functional connectivity study. Pain Med. 19: 1737–1747, https://doi.org/10.1093/pm/pnx084 . (PMID: 10.1093/pm/pnx084)
      Morgan, M.M. and Fields, H.L. (1994). Pronounced changes in the activity of nociceptive modulatory neurons in the rostral ventromedial medulla in response to prolonged thermal noxious stimuli. J. Neurophysiol. 72: 1161–1170, https://doi.org/10.1152/jn.1994.72.3.1161 . (PMID: 10.1152/jn.1994.72.3.1161)
      Morton, D.L., Sandhu, J.S., and Jones, A.K. (2016). Brain imaging of pain: state of the art. J. Pain Res. 9: 613–624, https://doi.org/10.2147/jpr.s60433 . (PMID: 10.2147/jpr.s60433)
      Mukherjee, A. and Caroni, P. (2019). Author correction: infralimbic cortex is required for learning alternatives to prelimbic promoted associations through reciprocal connectivity. Nat. Commun. 10: 3082, https://doi.org/10.1038/s41467-019-11205-w . (PMID: 10.1038/s41467-019-11205-w)
      Nagasaka, K., Takashima, I., Matsuda, K., and Higo, N. (2017). Late-onset hypersensitivity after a lesion in the ventral posterolateral nucleus of the thalamus: a macaque model of central post-stroke pain. Sci. Rep. 7: 10316, https://doi.org/10.1038/s41598-017-10679-2 . (PMID: 10.1038/s41598-017-10679-2)
      Nardone, R., Höller, Y., Sebastianelli, L., Versace, V., Saltuari, L., Brigo, F., Lochner, P., and Trinka, E. (2018). Cortical morphometric changes after spinal cord injury. Brain Res. Bull. 137: 107–119, https://doi.org/10.1016/j.brainresbull.2017.11.013 . (PMID: 10.1016/j.brainresbull.2017.11.013)
      Neubert, M.J., Kincaid, W., and Heinricher, M.M. (2004). Nociceptive facilitating neurons in the rostral ventromedial medulla. Pain 110: 158–165, https://doi.org/10.1016/j.pain.2004.03.017 . (PMID: 10.1016/j.pain.2004.03.017)
      Neugebauer, V. (2020). Amygdala physiology in pain. Handb. Behav. Neurosci. 26: 101–113, https://doi.org/10.1016/b978-0-12-815134-1.00004-0 . (PMID: 10.1016/b978-0-12-815134-1.00004-0)
      Neugebauer, V., Li, W., Bird, G.C., and Han, J.S. (2004). The amygdala and persistent pain. Neuroscientist 10: 221–234, https://doi.org/10.1177/1073858403261077 . (PMID: 10.1177/1073858403261077)
      Neugebauer, V., Mazzitelli, M., Cragg, B., Ji, G., Navratilova, E., and Porreca, F. (2020). Amygdala, neuropeptides, and chronic pain-related affective behaviors. Neuropharmacology 170: 108052, https://doi.org/10.1016/j.neuropharm.2020.108052 . (PMID: 10.1016/j.neuropharm.2020.108052)
      Neumann, L., Wulms, N., Witte, V., Spisak, T., Zunhammer, M., Bingel, U., and Schmidt-Wilcke, T. (2021). Network properties and regional brain morphology of the insular cortex correlate with individual pain thresholds. Hum. Brain Mapp. 42: 4896–4908, https://doi.org/10.1002/hbm.25588 . (PMID: 10.1002/hbm.25588)
      Nguyen, E., Smith, K.M., Cramer, N., Holland, R.A., Bleimeister, I.H., Flores-Felix, K., Silberberg, H., Keller, A., Le Pichon, C.E., and Ross, S.E. (2022). Medullary kappa-opioid receptor neurons inhibit pain and itch through a descending circuit. Brain 145: 2586–2601, https://doi.org/10.1093/brain/awac189 . (PMID: 10.1093/brain/awac189)
      Okada, T., Kato, D., Nomura, Y., Obata, N., Quan, X., Morinaga, A., Yano, H., Guo, Z., Aoyama, Y., Tachibana, Y., et al. (2021). Pain induces stable, active microcircuits in the somatosensory cortex that provide a therapeutic target. Sci. Adv. 7: 6–8, https://doi.org/10.1126/sciadv.abd8261 . (PMID: 10.1126/sciadv.abd8261)
      Osborne, N.R., Cheng, J.C., Rogachov, A., Kim, J.A., Hemington, K.S., Bosma, R.L., Inman, R.D., and Davis, K.D. (2021). Abnormal subgenual anterior cingulate circuitry is unique to women but not men with chronic pain. Pain 162: 97–108, https://doi.org/10.1097/j.pain.0000000000002016 . (PMID: 10.1097/j.pain.0000000000002016)
      Ossipov, M.H., Dussor, G.O., and Porreca, F. (2010). Central modulation of pain. J. Clin. Invest. 120: 3779–3787, https://doi.org/10.1172/jci43766 . (PMID: 10.1172/jci43766)
      Ossipov, M.H., Morimura, K., and Porreca, F. (2014). Descending pain modulation and chronification of pain. Curr. Opin. Support Palliat. Care 8: 143–151, https://doi.org/10.1097/spc.0000000000000055 . (PMID: 10.1097/spc.0000000000000055)
      Ostrowsky, K., Magnin, M., Ryvlin, P., Isnard, J., Guenot, M., and Mauguière, F. (2002). Representation of pain and somatic sensation in the human insula: a study of responses to direct electrical cortical stimulation. Cereb. Cortex 12: 376–385, https://doi.org/10.1093/cercor/12.4.376 . (PMID: 10.1093/cercor/12.4.376)
      Otsu, Y. and Aubrey, K.R. (2022). Kappa opioids inhibit the GABA/glycine terminals of rostral ventromedial medulla projections in the superficial dorsal horn of the spinal cord. J. Physiol. 600: 4187–4205, https://doi.org/10.1113/jp283021 . (PMID: 10.1113/jp283021)
      Pare, D. and Duvarci, S. (2012). Amygdala microcircuits mediating fear expression and extinction. Curr. Opin. Neurobiol. 22: 717–723, https://doi.org/10.1016/j.conb.2012.02.014 . (PMID: 10.1016/j.conb.2012.02.014)
      Pauli, J.L., Chen, J.Y., Basiri, M.L., Park, S., Carter, M.E., Sanz, E., McKnight, G.S., Stuber, G.D., and Palmiter, R.D. (2022). Molecular and anatomical characterization of parabrachial neurons and their axonal projections. Elife 11: 5–7.
      Peyron, R., Laurent, B., and García-Larrea, L. (2000). Functional imaging of brain responses to pain. A review and meta-analysis (2000), Neurophysiol. Clin . 30: 263–288, https://doi.org/10.1016/s0987-7053(00)00227-6 . (PMID: 10.1016/s0987-7053(00)00227-6)
      Pieretti, S., Di Giannuario, A., Di Giovannandrea, R., Marzoli, F., Piccaro, G., Minosi, P., and Aloisi, A.M. (2016). Gender differences in pain and its relief. Ann. Ist. Super Sanita. 52: 184–189, https://doi.org/10.4415/ANN_16_02_09 . (PMID: 10.4415/ANN_16_02_09)
      Ploghaus, A., Tracey, I., Gati, J.S., Clare, S., Menon, R.S., Matthews, P.M., and Rawlins, J.N. (1999). Dissociating pain from its anticipation in the human brain. Science 284: 1979–1981, https://doi.org/10.1126/science.284.5422.1979 . (PMID: 10.1126/science.284.5422.1979)
      Ploner, M., Schmitz, F., Freund, H.J., and Schnitzler, A. (2000). Differential organization of touch and pain in human primary somatosensory cortex. J. Neurophysiol. 83: 1770–1776, https://doi.org/10.1152/jn.2000.83.3.1770 . (PMID: 10.1152/jn.2000.83.3.1770)
      Presto, P. and Neugebauer, V. (2022). Sex differences in CGRP regulation and function in the amygdala in a rat model of neuropathic pain. Front. Mol. Neurosci. 15: 928587, https://doi.org/10.3389/fnmol.2022.928587 . (PMID: 10.3389/fnmol.2022.928587)
      Raja, S.N., Carr, D.B., Cohen, M., Finnerup, N.B., Flor, H., Gibson, S., Keefe, F.J., Mogil, J.S., Ringkamp, M., Sluka, K.A., et al.. (2020). The revised International Association for the Study of Pain definition of pain: concepts, challenges, and compromises. Pain 161: 1976–1982, https://doi.org/10.1097/j.pain.0000000000001939 . (PMID: 10.1097/j.pain.0000000000001939)
      Raver, C., Uddin, O., Ji, Y., Li, Y., Cramer, N., Jenne, C., Morales, M., Masri, R., and Keller, A. (2020). An amygdalo-parabrachial pathway regulates pain perception and chronic pain. J. Neurosci. 40: 3424–3442, https://doi.org/10.1523/jneurosci.0075-20.2020 . (PMID: 10.1523/jneurosci.0075-20.2020)
      Ren, J., Xiang, J., Chen, Y., Li, F., Wu, T., and Shi, J. (2019). Abnormal functional connectivity under somatosensory stimulation in migraine: a multi-frequency magnetoencephalography study. J. Headache Pain 20: 3, https://doi.org/10.1186/s10194-019-0958-3 . (PMID: 10.1186/s10194-019-0958-3)
      Roeder, Z., Chen, Q., Davis, S., Carlson, J.D., Tupone, D., and Heinricher, M.M. (2016). Parabrachial complex links pain transmission to descending pain modulation. Pain 157: 2697–2708, https://doi.org/10.1097/j.pain.0000000000000688 . (PMID: 10.1097/j.pain.0000000000000688)
      Rosenfeld, M.G., Mermod, J.J., Amara, S.G., Swanson, L.W., Sawchenko, P.E., Rivier, J., Vale, W.W., and Evans, R.M. (1983). Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing. Nature 304: 129–135, https://doi.org/10.1038/304129a0 . (PMID: 10.1038/304129a0)
      Saadé, N.E., Al Amin, H., Abdel Baki, S., Safieh-Garabedian, B., Atweh, S.F., and Jabbur, S.J. (2006). Transient attenuation of neuropathic manifestations in rats following lesion or reversible block of the lateral thalamic somatosensory nuclei. Exp. Neurol. 197: 157–166, https://doi.org/10.1016/j.expneurol.2005.09.005 . (PMID: 10.1016/j.expneurol.2005.09.005)
      Sadler, K.E., McQuaid, N.A., Cox, A.C., Behun, M.N., Trouten, A.M., and Kolber, B.J. (2017). Divergent functions of the left and right central amygdala in visceral nociception. Pain 158: 747–759, https://doi.org/10.1097/j.pain.0000000000000830 . (PMID: 10.1097/j.pain.0000000000000830)
      Sah, P., Faber, E.S., Lopez De Armentia, M., and Power, J. (2003). The amygdaloid complex: anatomy and physiology. Physiol. Rev. 83: 803–834, https://doi.org/10.1152/physrev.00002.2003 . (PMID: 10.1152/physrev.00002.2003)
      Samineni, V.K., Grajales-Reyes, J.G., Copits, B.A., O’Brien, D.E., Trigg, S.L., Gomez, A.M., Bruchas, M.R., and Gereau, R.W.th. (2017). Divergent modulation of nociception by glutamatergic and GABAergic neuronal subpopulations in the periaqueductal gray. eNeuro 4: 4–9, https://doi.org/10.1523/eneuro.0129-16.2017 . (PMID: 10.1523/eneuro.0129-16.2017)
      Santello, M. and Nevian, T. (2015). Dysfunction of cortical dendritic integration in neuropathic pain reversed by serotoninergic neuromodulation. Neuron 86: 233–246, https://doi.org/10.1016/j.neuron.2015.03.003 . (PMID: 10.1016/j.neuron.2015.03.003)
      Saper, C.B. and Loewy, A.D. (2016). Commentary on: efferent connections of the parabrachial nucleus in the rat. C.B. Saper and A.D. Loewy, Brain Research 197: 291–317, 1980. Brain Res. 197: 1645: 15–7. https://doi.org/10.1016/0006-8993(80)91117-8 . (PMID: 10.1016/0006-8993(80)91117-8)
      Schnitzler, A. and Ploner, M. (2000). Neurophysiology and functional neuroanatomy of pain perception. J. Clin. Neurophysiol. 17: 592–603, https://doi.org/10.1097/00004691-200011000-00005 . (PMID: 10.1097/00004691-200011000-00005)
      Segerdahl, A.R., Mezue, M., Okell, T.W., Farrar, J.T., and Tracey, I. (2015). The dorsal posterior insula subserves a fundamental role in human pain. Nat. Neurosci. 18: 499–500, https://doi.org/10.1038/nn.3969 . (PMID: 10.1038/nn.3969)
      Sellmeijer, J., Mathis, V., Hugel, S., Li, X.H., Song, Q., Chen, Q.Y., Barthas, F., Lutz, P.E., Karatas, M., Luthi, A., et al.. (2018). Hyperactivity of anterior cingulate cortex areas 24a/24b drives chronic pain-induced anxiodepressive-like consequences. J. Neurosci. 38: 3102–3115, https://doi.org/10.1523/jneurosci.3195-17.2018 . (PMID: 10.1523/jneurosci.3195-17.2018)
      Seminowicz, D.A. and Moayedi, M. (2017). The dorsolateral prefrontal cortex in acute and chronic pain. J. Pain 18: 1027–1035, https://doi.org/10.1016/j.jpain.2017.03.008 . (PMID: 10.1016/j.jpain.2017.03.008)
      Senn, V., Wolff, S.B., Herry, C., Grenier, F., Ehrlich, I., Gründemann, J., Fadok, J.P., Müller, C., Letzkus, J.J., and Lüthi, A. (2014). Long-range connectivity defines behavioral specificity of amygdala neurons. Neuron 81: 428–437, https://doi.org/10.1016/j.neuron.2013.11.006 . (PMID: 10.1016/j.neuron.2013.11.006)
      Shinohara, K., Watabe, A.M., Nagase, M., Okutsu, Y., Takahashi, Y., Kurihara, H., and Kato, F. (2017). Essential role of endogenous calcitonin gene-related peptide in pain-associated plasticity in the central amygdala. Eur. J. Neurosci. 46: 2149–2160, https://doi.org/10.1111/ejn.13662 . (PMID: 10.1111/ejn.13662)
      Singer, T., Critchley, H.D., and Preuschoff, K. (2009). A common role of insula in feelings, empathy and uncertainty. Trends Cogn. Sci. 13: 334–340, https://doi.org/10.1016/j.tics.2009.05.001 . (PMID: 10.1016/j.tics.2009.05.001)
      Singh, A., Patel, D., Li, A., Hu, L., Zhang, Q., Liu, Y., Guo, X., Robinson, E., Martinez, E., Doan, L., et al.. (2020). Mapping cortical integration of sensory and affective pain pathways. Curr. Biol. 30: 1703–1715, https://doi.org/10.1016/j.cub.2020.02.091 . (PMID: 10.1016/j.cub.2020.02.091)
      Sun, L., Liu, R., Guo, F., Wen, M.Q., Ma, X.L., Li, K.Y., Sun, H., Xu, C.L., Li, Y.Y., Wu, M.Y., et al.. (2020a). Parabrachial nucleus circuit governs neuropathic pain-like behavior. Nat. Commun. 11: 5974, https://doi.org/10.1038/s41467-020-19767-w . (PMID: 10.1038/s41467-020-19767-w)
      Sun, Y., Wang, J., Liang, S.H., Ge, J., Lu, Y.C., Li, J.N., Chen, Y.B., Luo, D.S., Li, H., and Li, Y.Q. (2020b). Involvement of the ventrolateral periaqueductal gray matter-central medial thalamic nucleus-basolateral amygdala pathway in neuropathic pain regulation of rats. Front. Neuroanat. 14: 32, https://doi.org/10.3389/fnana.2020.00032 . (PMID: 10.3389/fnana.2020.00032)
      Tan, L.L., Oswald, M.J., Heinl, C., Retana Romero, O.A., Kaushalya, S.K., Monyer, H., and Kuner, R. (2019). Gamma oscillations in somatosensory cortex recruit prefrontal and descending serotonergic pathways in aversion and nociception. Nat. Commun. 10: 983, https://doi.org/10.1038/s41467-019-08873-z . (PMID: 10.1038/s41467-019-08873-z)
      Tang, J.S., Chiang, C.Y., Dostrovsky, J.O., Yao, D., and Sessle, B.J. (2021). Responses of neurons in rostral ventromedial medulla to nociceptive stimulation of craniofacial region and tail in rats. Brain Res. 1767: 147539, https://doi.org/10.1016/j.brainres.2021.147539 . (PMID: 10.1016/j.brainres.2021.147539)
      Taylor, N.E., Pei, J., Zhang, J., Vlasov, K.Y., Davis, T., Taylor, E., Weng, F.J., Van Dort, C.J., Solt, K., and Brown, E.N. (2019). The role of glutamatergic and dopaminergic neurons in the periaqueductal gray/dorsal raphe: separating analgesia and anxiety. eNeuro 6: 4–10.
      Thompson, J.M. and Neugebauer, V. (2017). Amygdala plasticity and pain. Pain Res. Manag . 2017: 8296501.
      Thompson, J.M. and Neugebauer, V. (2019). Cortico-limbic pain mechanisms. Neurosci. Lett. 702: 15–23, https://doi.org/10.1016/j.neulet.2018.11.037 . (PMID: 10.1016/j.neulet.2018.11.037)
      Tian, Y. and Zalesky, A. (2018). Characterizing the functional connectivity diversity of the insula cortex: subregions, diversity curves and behavior. Neuroimage 183: 716–733, https://doi.org/10.1016/j.neuroimage.2018.08.055 . (PMID: 10.1016/j.neuroimage.2018.08.055)
      Timmermann, L., Ploner, M., Haucke, K., Schmitz, F., Baltissen, R., and Schnitzler, A. (2001). Differential coding of pain intensity in the human primary and secondary somatosensory cortex. J. Neurophysiol. 86: 1499–1503, https://doi.org/10.1152/jn.2001.86.3.1499 . (PMID: 10.1152/jn.2001.86.3.1499)
      Tobaldini, G., Sardi, N.F., Guilhen, V.A., and Fischer, L. (2019). Pain inhibits pain: an ascending-descending pain modulation pathway linking mesolimbic and classical descending mechanisms. Mol. Neurobiol. 56: 1000–1013, https://doi.org/10.1007/s12035-018-1116-7 . (PMID: 10.1007/s12035-018-1116-7)
      Todd, A.J. (2010). Neuronal circuitry for pain processing in the dorsal horn. Nat. Rev. Neurosci. 11: 823–836, https://doi.org/10.1038/nrn2947 . (PMID: 10.1038/nrn2947)
      Tonsfeldt, K.J., Suchland, K.L., Beeson, K.A., Lowe, J.D., Li, M.H., and Ingram, S.L. (2016). Sex differences in GABAA signaling in the periaqueductal gray induced by persistent inflammation. J. Neurosci. 36: 1669–1681, https://doi.org/10.1523/jneurosci.1928-15.2016 . (PMID: 10.1523/jneurosci.1928-15.2016)
      Tovote, P., Esposito, M.S., Botta, P., Chaudun, F., Fadok, J.P., Markovic, M., Wolff, S.B., Ramakrishnan, C., Fenno, L., Deisseroth, K., et al.. (2016). Midbrain circuits for defensive behaviour. Nature 534: 206–212, https://doi.org/10.1038/nature17996 . (PMID: 10.1038/nature17996)
      Tracey, I. (2005). Nociceptive processing in the human brain. Curr. Opin. Neurobiol. 15: 478–487, https://doi.org/10.1016/j.conb.2005.06.010 . (PMID: 10.1016/j.conb.2005.06.010)
      Uddin, O., Studlack, P., Akintola, T., Raver, C., Castro, A., Masri, R., and Keller, A. (2018). Amplified parabrachial nucleus activity in a rat model of trigeminal neuropathic pain. Neurobiol. Pain 3: 22–30, https://doi.org/10.1016/j.ynpai.2018.02.002 . (PMID: 10.1016/j.ynpai.2018.02.002)
      Vachon-Presseau, E., Tétreault, P., Petre, B., Huang, L., Berger, S.E., Torbey, S., Baria, A.T., Mansour, A.R., Hashmi, J.A., Griffith, J.W., et al.. (2016). Corticolimbic anatomical characteristics predetermine risk for chronic pain. Brain 139: 1958–1970, https://doi.org/10.1093/brain/aww100 . (PMID: 10.1093/brain/aww100)
      Veinante, P., Yalcin, I., and Barrot, M. (2013). The amygdala between sensation and affect: a role in pain. J. Mol. Psychiatry 1: 9, https://doi.org/10.1186/2049-9256-1-9 . (PMID: 10.1186/2049-9256-1-9)
      Veréb, D., Kincses, B., Spisák, T., Schlitt, F., Szabó, N., Faragó, P., Kocsis, K., Bozsik, B., Tóth, E., Király, A., et al.. (2021). Resting-state functional heterogeneity of the right insula contributes to pain sensitivity. Sci. Rep. 11: 22945, https://doi.org/10.1038/s41598-021-02474-x . (PMID: 10.1038/s41598-021-02474-x)
      Vertes, R.P. (2004). Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse 51: 32–58, https://doi.org/10.1002/syn.10279 . (PMID: 10.1002/syn.10279)
      Vertes, R.P. (2006). Interactions among the medial prefrontal cortex, hippocampus and midline thalamus in emotional and cognitive processing in the rat. Neuroscience 142: 1–20, https://doi.org/10.1016/j.neuroscience.2006.06.027 . (PMID: 10.1016/j.neuroscience.2006.06.027)
      Wang, G., Erpelding, N., and Davis, K.D. (2014). Sex differences in connectivity of the subgenual anterior cingulate cortex. Pain 155: 755–763, https://doi.org/10.1016/j.pain.2014.01.005 . (PMID: 10.1016/j.pain.2014.01.005)
      Wang, G.Q., Cen, C., Li, C., Cao, S., Wang, N., Zhou, Z., Liu, X.M., Xu, Y., Tian, N.X., Zhang, Y., et al.. (2015). Deactivation of excitatory neurons in the prelimbic cortex via Cdk5 promotes pain sensation and anxiety. Nat. Commun. 6: 7660, https://doi.org/10.1038/ncomms8660 . (PMID: 10.1038/ncomms8660)
      Wang, N., Zhang, Y.H., Wang, J.Y., and Luo, F. (2021). Current understanding of the involvement of the insular cortex in neuropathic pain: a narrative review. Int. J. Mol. Sci. 22: 2648, https://doi.org/10.3390/ijms22052648 . (PMID: 10.3390/ijms22052648)
      Wang, W., Tang, S., Li, C., Chen, J., Li, H., Su, Y., and Ning, B. (2019). Specific brain morphometric changes in spinal cord injury: a voxel-based meta-analysis of white and gray matter volume. J. Neurotrauma 36: 2348–2357, https://doi.org/10.1089/neu.2018.6205 . (PMID: 10.1089/neu.2018.6205)
      Wang, Z., Huang, S., Yu, X., Li, L., Yang, M., Liang, S., Liu, W., and Tao, J. (2020). Altered thalamic neurotransmitters metabolism and functional connectivity during the development of chronic constriction injury induced neuropathic pain. Biol. Res. 53: 36, https://doi.org/10.1186/s40659-020-00303-5 . (PMID: 10.1186/s40659-020-00303-5)
      Wiech, K. and Tracey, I. (2009). The influence of negative emotions on pain: behavioral effects and neural mechanisms. Neuroimage 47: 987–994, https://doi.org/10.1016/j.neuroimage.2009.05.059 . (PMID: 10.1016/j.neuroimage.2009.05.059)
      Willis, W.D. and Westlund, K.N. (1997). Neuroanatomy of the pain system and of the pathways that modulate pain. J. Clin. Neurophysiol. 14: 2–31, https://doi.org/10.1097/00004691-199701000-00002 . (PMID: 10.1097/00004691-199701000-00002)
      Wilson, T.D., Valdivia, S., Khan, A., Ahn, H.S., Adke, A.P., Martinez Gonzalez, S., Sugimura, Y.K., and Carrasquillo, Y. (2019). Dual and opposing functions of the central amygdala in the modulation of pain. Cell Rep. 29: 332–346, https://doi.org/10.1016/j.celrep.2019.09.011 . (PMID: 10.1016/j.celrep.2019.09.011)
      Wong, C.E., Hu, C.Y., Lee, P.H., Huang, C.C., Huang, H.W., Huang, C.Y., Lo, H.T., Liu, W., and Lee, J.S. (2022). Sciatic nerve stimulation alleviates acute neuropathic pain via modulation of neuroinflammation and descending pain inhibition in a rodent model. J. Neuroinflammation 19: 153, https://doi.org/10.1186/s12974-022-02513-y . (PMID: 10.1186/s12974-022-02513-y)
      Woon, E.P., Sequeira, M.K., Barbee, B.R., and Gourley, S.L. (2020). Involvement of the rodent prelimbic and medial orbitofrontal cortices in goal-directed action: a brief review. J. Neurosci. Res. 98: 1020–1030, https://doi.org/10.1002/jnr.24567 . (PMID: 10.1002/jnr.24567)
      Worthen, S.F., Hobson, A.R., Hall, S.D., Aziz, Q., and Furlong, P.L. (2011). Primary and secondary somatosensory cortex responses to anticipation and pain: a magnetoencephalography study. Eur. J. Neurosci. 33: 946–959, https://doi.org/10.1111/j.1460-9568.2010.07575.x . (PMID: 10.1111/j.1460-9568.2010.07575.x)
      Yalcin, I., Barthas, F., and Barrot, M. (2014). Emotional consequences of neuropathic pain: insight from preclinical studies. Neurosci. Biobehav. Rev. 47: 154–164, https://doi.org/10.1016/j.neubiorev.2014.08.002 . (PMID: 10.1016/j.neubiorev.2014.08.002)
      Yin, J.B., Liang, S.H., Li, F., Zhao, W.J., Bai, Y., Sun, Y., Wu, Z.Y., Ding, T., Sun, Y., Liu, H.X., et al.. (2020). dmPFC-vlPAG projection neurons contribute to pain threshold maintenance and antianxiety behaviors. J. Clin. Invest. 130: 6555–6570, https://doi.org/10.1172/jci127607 . (PMID: 10.1172/jci127607)
      Yu, W., Pati, D., Pina, M.M., Schmidt, K.T., Boyt, K.M., Hunker, A.C., Zweifel, L.S., McElligott, Z.A., and Kash, T.L. (2021). Periaqueductal gray/dorsal raphe dopamine neurons contribute to sex differences in pain-related behaviors. Neuron 109: 1365–1380, https://doi.org/10.1016/j.neuron.2021.03.001 . (PMID: 10.1016/j.neuron.2021.03.001)
      Yue, L., Ma, L.Y., Cui, S., Liu, F.Y., Yi, M., and Wan, Y. (2017). Brain-derived neurotrophic factor in the infralimbic cortex alleviates inflammatory pain. Neurosci. Lett. 655: 7–13, https://doi.org/10.1016/j.neulet.2017.06.028 . (PMID: 10.1016/j.neulet.2017.06.028)
      Zhang, C., Chen, R.X., Zhang, Y., Wang, J., Liu, F.Y., Cai, J., Liao, F.F., Xu, F.Q., Yi, M., and Wan, Y. (2017). Reduced GABAergic transmission in the ventrobasal thalamus contributes to thermal hyperalgesia in chronic inflammatory pain. Sci. Rep. 7: 41439, https://doi.org/10.1038/srep41439 . (PMID: 10.1038/srep41439)
      Zhang, M.M., Geng, A.Q., Chen, K., Wang, J., Wang, P., Qiu, X.T., Gu, J.X., Fan, H.W., Zhu, D.Y., Yang, S.M., et al.. (2022). Glutamatergic synapses from the insular cortex to the basolateral amygdala encode observational pain. Neuron 110: 1993–2008, https://doi.org/10.1016/j.neuron.2022.03.030 . (PMID: 10.1016/j.neuron.2022.03.030)
      Zhang, Z., Gadotti, V.M., Chen, L., Souza, I.A., Stemkowski, P.L., and Zamponi, G.W. (2015). Role of prelimbic GABAergic circuits in sensory and emotional aspects of neuropathic pain. Cell Rep. 12: 752–759, https://doi.org/10.1016/j.celrep.2015.07.001 . (PMID: 10.1016/j.celrep.2015.07.001)
      Zhou, H., Zhang, Q., Martinez, E., Dale, J., Hu, S., Zhang, E., Liu, K., Huang, D., Yang, G., Chen, Z., et al.. (2018). Ketamine reduces aversion in rodent pain models by suppressing hyperactivity of the anterior cingulate cortex. Nat. Commun. 9: 3751, https://doi.org/10.1038/s41467-018-06295-x . (PMID: 10.1038/s41467-018-06295-x)
      Zhu, H., Xiang, H.C., Li, H.P., Lin, L.X., Hu, X.F., Zhang, H., Meng, W.Y., Liu, L., Chen, C., Shu, Y., et al.. (2019). Inhibition of GABAergic neurons and excitation of glutamatergic neurons in the ventrolateral periaqueductal gray participate in electroacupuncture analgesia mediated by cannabinoid receptor. Front. Neurosci. 13: 484, https://doi.org/10.3389/fnins.2019.00484 . (PMID: 10.3389/fnins.2019.00484)
      Zhu, X., Xu, Y., Shen, Z., Zhang, H., Xiao, S., Zhu, Y., Wu, M., Chen, Y., Wu, Z., Xu, Y., et al.. (2021). Rostral anterior cingulate cortex-ventrolateral periaqueductal gray circuit underlies electroacupuncture to alleviate hyperalgesia but not anxiety-like behaviors in mice with spared nerve injury. Front. Neurosci. 15: 757628, https://doi.org/10.3389/fnins.2021.757628 . (PMID: 10.3389/fnins.2021.757628)
      Zhu, X., Zhou, W., Jin, Y., Tang, H., Cao, P., Mao, Y., Xie, W., Zhang, X., Zhao, F., Luo, M.H., et al.. (2019). A central amygdala input to the parafascicular nucleus controls comorbid pain in depression. Cell Rep. 29: 3847–3858, https://doi.org/10.1016/j.celrep.2019.11.003 . (PMID: 10.1016/j.celrep.2019.11.003)
      Zhu, Y.B., Wang, Y., Hua, X.X., Xu, L., Liu, M.Z., Zhang, R., Liu, P.F., Li, J.B., Zhang, L., and Mu, D. (2022). PBN-PVT projections modulate negative affective states in mice. Elife 11: 6–9, https://doi.org/10.7554/elife.68372 . (PMID: 10.7554/elife.68372)
      Zhuo, M. and Gebhart, G.F. (1997). Biphasic modulation of spinal nociceptive transmission from the medullary raphe nuclei in the rat. J. Neurophysiol. 78: 746–758, https://doi.org/10.1152/jn.1997.78.2.746 . (PMID: 10.1152/jn.1997.78.2.746)
    • Contributed Indexing:
      Keywords: ascending pain modulation; descending pain modulation; pain; pain matrix
    • Publication Date:
      Date Created: 20230608 Date Completed: 20231127 Latest Revision: 20231208
    • Publication Date:
      20231215
    • Accession Number:
      10.1515/revneuro-2023-0037
    • Accession Number:
      37288945