Microorganisms oxidize glucose through distinct pathways in permeable and cohesive sediments.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Oxford University Press Country of Publication: England NLM ID: 101301086 Publication Model: Print Cited Medium: Internet ISSN: 1751-7370 (Electronic) Linking ISSN: 17517362 NLM ISO Abbreviation: ISME J Subsets: MEDLINE
    • Publication Information:
      Publication: 2024- : Oxford : Oxford University Press
      Original Publication: London : Nature Pub. Group
    • Subject Terms:
    • Abstract:
      In marine sediments, microbial degradation of organic matter under anoxic conditions is generally thought to proceed through fermentation to volatile fatty acids, which are then oxidized to CO2 coupled to the reduction of terminal electron acceptors (e.g. nitrate, iron, manganese, and sulfate). It has been suggested that, in environments with a highly variable oxygen regime, fermentation mediated by facultative anaerobic bacteria (uncoupled to external terminal electron acceptors) becomes the dominant process. Here, we present the first direct evidence for this fermentation using a novel differentially labeled glucose isotopologue assay that distinguishes between CO2 produced from respiration and fermentation. Using this approach, we measured the relative contribution of respiration and fermentation of glucose in a range of permeable (sandy) and cohesive (muddy) sediments, as well as four bacterial isolates. Under anoxia, microbial communities adapted to high-energy sandy or bioturbated sites mediate fermentation via the Embden-Meyerhof-Parnas pathway, in a manner uncoupled from anaerobic respiration. Prolonged anoxic incubation suggests that this uncoupling lasts up to 160 h. In contrast, microbial communities in anoxic muddy sediments (smaller median grain size) generally completely oxidized 13C glucose to 13CO2, consistent with the classical redox cascade model. We also unexpectedly observed that fermentation occurred under oxic conditions in permeable sediments. These observations were further confirmed using pure cultures of four bacteria isolated from permeable sediments. Our results suggest that microbial communities adapted to variable oxygen regimes metabolize glucose (and likely other organic molecules) through fermentation uncoupled to respiration during transient anoxic conditions.
      (© The Author(s) 2024. Published by Oxford University Press on behalf of the International Society for Microbial Ecology.)
    • References:
      Can J Microbiol. 2012 Jun;58(6):709-18. (PMID: 22571732)
      Res Microbiol. 1996 Jul-Sep;147(6-7):448-55. (PMID: 9084754)
      ISME J. 2008 Aug;2(8):815-29. (PMID: 18309360)
      Math Biosci Eng. 2018 Dec 11;16(1):168-186. (PMID: 30674115)
      Nucleic Acids Res. 2020 Sep 18;48(16):8883-8900. (PMID: 32766782)
      J Gen Microbiol. 1988 Aug;134(8):2103-9. (PMID: 3253406)
      PLoS Comput Biol. 2017 Jun 8;13(6):e1005595. (PMID: 28594827)
      Science. 2009 May 22;324(5930):1029-33. (PMID: 19460998)
      Front Microbiol. 2018 Dec 18;9:3124. (PMID: 30619197)
      Proc Natl Acad Sci U S A. 2013 Jun 11;110(24):10039-44. (PMID: 23630264)
      Nucleic Acids Res. 2022 Jan 7;50(D1):D785-D794. (PMID: 34520557)
      Nat Methods. 2015 Jan;12(1):59-60. (PMID: 25402007)
      Nat Microbiol. 2019 Jun;4(6):1014-1023. (PMID: 30858573)
      Bioinformatics. 2019 Nov 15;:. (PMID: 31730192)
      Nat Geosci. 2017 Jan;10(1):30-35. (PMID: 28070216)
      Proc Natl Acad Sci U S A. 2020 Jul 7;117(27):15911-15922. (PMID: 32576690)
      ISME J. 2021 Oct;15(10):2986-3004. (PMID: 33941890)
      ISME J. 2017 May;11(5):1276-1281. (PMID: 28060363)
      Methods Enzymol. 2013;529:299-309. (PMID: 24011056)
      Sci Rep. 2017 May 25;7(1):2400. (PMID: 28546547)
      Proc Natl Acad Sci U S A. 2021 Nov 9;118(45):. (PMID: 34732568)
      Nat Commun. 2023 Apr 19;14(1):2240. (PMID: 37076457)
      Biotechnol Bioeng. 2009 Dec 15;104(6):1153-61. (PMID: 19685524)
      Nature. 2015 Dec 3;528(7580):99-104. (PMID: 26632588)
      ISME J. 2022 Mar;16(3):750-763. (PMID: 34584214)
    • Grant Information:
      DP180101762 ARC Discovery Project; APP1178715 NHMRC EL2 Fellowship; HF11.17 Hermon Slade Foundation; FNU 7014-00078 Danish National Research Council; 669947 European Union's Horizon 2020 Research and Innovation Program; Danish National Research Foundation; DNRF145 Danish Center for Hadal Research
    • Contributed Indexing:
      Keywords: fermentation; organic carbon; permeable sediments; respiration
    • Accession Number:
      IY9XDZ35W2 (Glucose)
      142M471B3J (Carbon Dioxide)
      S88TT14065 (Oxygen)
    • Publication Date:
      Date Created: 20240216 Date Completed: 20240219 Latest Revision: 20240316
    • Publication Date:
      20240316
    • Accession Number:
      PMC10939381
    • Accession Number:
      10.1093/ismejo/wrae001
    • Accession Number:
      38365261