Exploring the dynamics of mixed-species biofilms involving Candida spp. and bacteria in cystic fibrosis.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer-Verlag Country of Publication: Germany NLM ID: 0410427 Publication Model: Electronic Cited Medium: Internet ISSN: 1432-072X (Electronic) Linking ISSN: 03028933 NLM ISO Abbreviation: Arch Microbiol Subsets: MEDLINE
    • Publication Information:
      Original Publication: Berlin, New York, Springer-Verlag.
    • Subject Terms:
    • Abstract:
      Cystic fibrosis (CF) is an inherited disease that results from mutations in the gene responsible for the cystic fibrosis transmembrane conductance regulator (CFTR). The airways become clogged with thick, viscous mucus that traps microbes in respiratory tracts, facilitating colonization, inflammation and infection. CF is recognized as a biofilm-associated disease, it is commonly polymicrobial and can develop in biofilms. This review discusses Candida spp. and both Gram-positive and Gram-negative bacterial biofilms that affect the airways and cause pulmonary infections in the CF context, with a particular focus on mixed-species biofilms. In addition, the review explores the intricate interactions between fungal and bacterial species within these biofilms and elucidates the underlying molecular mechanisms that govern their dynamics. Moreover, the review addresses the multifaceted issue of antimicrobial resistance in the context of CF-associated biofilms. By synthesizing current knowledge and research findings, this review aims to provide insights into the pathogenesis of CF-related infections and identify potential therapeutic approaches to manage and combat these complex biofilm-mediated infections.
      (© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
    • References:
      Aanaes K, Eickhardt S, Johansen HK, von Buchwald C, Skov M, Høiby N, Bjarnsholt T (2015) Sinus biofilms in patients with cystic fibrosis: is adjusted eradication therapy needed? Eur Arch Otorhinolaryngol 272(9):2291–2297. (PMID: 10.1007/s00405-014-3322-x25297534)
      Abdelraheem WM, Refaie MMM, Yousef RKM, El Fatah ASA, Mousa YM, Rashwan R (2022) Assessment of antibacterial and anti-biofilm effects of vitamin C against Pseudomonas aeruginosa clinical isolates. Front Microbiol 13:847449. https://doi.org/10.3389/fmicb.2022.847449. (PMID: 10.3389/fmicb.2022.847449356687569163820)
      Addy C, Caskey S, Downey D (2020) Gram negative infections in cystic fibrosis: a review of preventative and treatment options. Expert Opin Orphan Drugs 8(1):11–26. (PMID: 10.1080/21678707.2020.1713748)
      Akil N, Muhlebach MS (2018) Biology and management of methicillin resistant Staphylococcus Aureus in cystic fibrosis. Pediatr Pulmonol 53(S3):S64–S74. https://doi.org/10.1002/ppul.24139. (PMID: 10.1002/ppul.2413930073802)
      Aktas C, Nilufer ZE, Karatuna O, Yagci AK (2013) Panton-valentine leukocidin and biofilm production of Staphylococcus aureus isolated from respiratory tract. JIDC 7(11):888–891. https://doi.org/10.3855/jidc.4135. (PMID: 10.3855/jidc.4135)
      Akişoğlu Ö, Engin D, Sariçam S, Müştak HK, Şener B, Hasçelik G (2019) Kistik fibrozisli ve kistik fibrozisi olmayan hasta grubunda Burkholderia türlerinin multilokus sekans analizi, biyofilm oluşturma, antibiyotik duyarlilik ve sinerji testler. Mikrobiyol Bul 53(1):22–36. https://doi.org/10.5578/mb.67730. (PMID: 10.5578/mb.6773030683036)
      Alam F, Blackburn SA, Davis J, Massar K, Correia J, Tsai H-J, Blair JMA, Hall RA (2023) Pseudomonas Aeruginosa increases the susceptibility of Candida Albicans to amphotericin B in dual-species biofilms. J Antimicrob Chemother 78(9):2228–2241. https://doi.org/10.1093/jac/dkad228. (PMID: 10.1093/jac/dkad2283752231610477122)
      Alam F, Catlow D, Di Maio A, Blair JMA, Hall RA (2020) Candida albicans enhances meropenem tolerance of Pseudomonas aeruginosa in a dual-species biofilm. J Antimicrob Chemother 75(4):925–935. https://doi.org/10.1093/jac/dkz514. (PMID: 10.1093/jac/dkz51431865379)
      Alkawash MA, Soothill JS, Schiller NL (2006) Alginate lyase enhances antibiotic killing of mucoid Pseudomonas aeruginosa in biofilms. APMIS 114(2):131–138. https://doi.org/10.1111/j.1600-0463.2006.apm_356.x. (PMID: 10.1111/j.1600-0463.2006.apm_356.x16519750)
      Allen L, Allen L, Carr SB, Davies G, Downey D, Egan M, Forton JT, Gray R, Haworth C, Horsley A, Smyth AR, Southern KW, Davies JC (2023) Future therapies for cystic fibrosis. Nat Commun 14(1):693. https://doi.org/10.1038/s41467-023-36244-2. (PMID: 10.1038/s41467-023-36244-2367550449907205)
      Al-Momani H, Almasri M, Al Balawi DA, Hamed S, Albiss BA, Aldabaibeh N, Ibrahim L, Albalawi H, Al Mahmoud SH, Khasawneh AI, Kilani M, Aldhafeeri M, Bani-Hani M, Wilcox M, Pearson J, Ward C (2023) The efficacy of biosynthesized silver nanoparticles against Pseudomonas aeruginosa isolates from cystic fibrosis patients. Sci Rep 13(1):8876. https://doi.org/10.1038/s41598-023-35919-6. (PMID: 10.1038/s41598-023-35919-63726406010235065)
      Alshraiedeh N, Atawneh F, Bani-Salameh R, Alsharedeh R, Al Tall Y, Alsaggar M (2022) Identification and characterization of bacteria isolated from patients with cystic fibrosis in Jordan. Ann Med 54(1):2795–2803. https://doi.org/10.1080/07853890.2022.2131282. (PMID: 10.1080/07853890.2022.2131282)
      Anju VT, Busi S, Imchen M, Kumavath R, Mohan MS, Salim SA, Subhaswaraj P, Dyavaiah M (2022) polymicrobial infections and biofilms: clinical significance and eradication strategies. Antibiotics 11(12):1731. https://doi.org/10.3390/antibiotics11121731. (PMID: 10.3390/antibiotics11121731365513889774821)
      Armbruster CR, Coenye T, Touqui L, Bomberger JM (2020) Interplay between host-microbe and microbe-microbe interactions in cystic fibrosis. J Cyst Fibros 19:S47-53. https://doi.org/10.1016/j.jcf.2019.10.015. (PMID: 10.1016/j.jcf.2019.10.01531685398)
      Agathe B, Sorlin P, Pouget C, Chiron R, Lavigne J-P, Dunyach-Remy C, Marchandin H (2021) Biofilm formation in methicillin-resistant Staphylococcus aureus isolated in cystic fibrosis patients is strain-dependent and differentially influenced by antibiotics. Front Microbiol 12:750489. https://doi.org/10.3389/fmicb.2021.750489. (PMID: 10.3389/fmicb.2021.750489)
      Arvanitis M, Mylonakis E (2015) Fungal-bacterial interactions and their relevance in health. Cell Microbiol 17(10):1442–1446. https://doi.org/10.1111/cmi.12493. (PMID: 10.1111/cmi.1249326243723)
      Azoulay E, Timsit J-F, Tafflet M, de Lassence A, Darmon M, Zahar J-R, Adrie C, Garrouste-Orgeas M, Cohen Y, Mourvillier B, Schlemmer B (2006) Candida colonization of the respiratory tract and subsequent pseudomonas ventilator-associated pneumonia. Chest 129(1):110–117. https://doi.org/10.1378/chest.129.1.110. (PMID: 10.1378/chest.129.1.11016424420)
      Bandara HMHN, Panduwawala CP, Samaranayake LP (2019) Biodiversity of the human oral mycobiome in health and disease. Oral Dis 25(2):363–371. https://doi.org/10.1111/odi.12899. (PMID: 10.1111/odi.1289929786923)
      Banjar H, Al-Mogarri I, Nizami I, Al-Haider S, AlMaghamsi T, Alkaf S, Al-Enazi A, Moghrabi N (2021) Geographic distribution of cystic fibrosis transmembrane conductance regulator (CFTR) gene mutations in Saudi Arabia. Int J Pediatr Adolesc Med 8(1):25–28. https://doi.org/10.1016/j.ijpam.2019.12.002. (PMID: 10.1016/j.ijpam.2019.12.00233718573)
      Bashir G, Bhat JI, Mohammad S, Fomda BA, Bali NK, Altaf I (2021) Airway microbiology in children with cystic fibrosis: a prospective cohort study from northern india. J Trop Pediatr 67(2):030. https://doi.org/10.1093/tropej/fmab030. (PMID: 10.1093/tropej/fmab030)
      Bellavita R, Maione A, Braccia S, Sinoca M, Galdiero S, Galdiero E, Falanga A (2023) Myxinidin-derived peptide against biofilms caused by cystic fibrosis emerging pathogens. Int J Mol Sci 24(4):3092. https://doi.org/10.3390/ijms24043092. (PMID: 10.3390/ijms24043092368345129964602)
      Bjarnsholt T, Jensen PØ, Fiandaca MJ, Pedersen J, Hansen CR, Andersen CB, Pressler T, Givskov M, Høiby N (2009) Pseudomonas Aeruginosa biofilms in the respiratory tract of cystic fibrosis patients. Pediatr Pulmonol 44(6):547–558. https://doi.org/10.1002/ppul.21011. (PMID: 10.1002/ppul.2101119418571)
      Blanchard AC, Waters VJ (2019) Microbiology of cystic fibrosis airway disease. Semin Respir Crit Care Med 40(06):727–736. https://doi.org/10.1055/s-0039-1698464. (PMID: 10.1055/s-0039-1698464318877687117079)
      Blasi F, Page C, Rossolini GM, Pallecchi L, Matera MG, Rogliani P, Cazzola M (2016) The effect of N-Acetylcysteine on biofilms: implications for the treatment of respiratory tract infections. Respir Med 117:190–197. https://doi.org/10.1016/j.rmed.2016.06.015. (PMID: 10.1016/j.rmed.2016.06.01527492531)
      Bobbo A, Khadijat UA, Chau D-M, Nordin N, Abdullah S (2023) A comprehensive review of cystic fibrosis in Africa and Asia. Saudi J Biol Sci 30(7):103685. https://doi.org/10.1016/j.sjbs.2023.103685. (PMID: 10.1016/j.sjbs.2023.103685)
      Bouchara J-P, Le Govic Y, Kabbara S, Cimon B, Zouhair R, Hamze M, Papon N, Nevez G (2020) Advances in understanding and managing Scedosporium respiratory infections in patients with cystic fibrosis. Expert Rev Respir Med 14(3):259–273. https://doi.org/10.1080/17476348.2020.1705787. (PMID: 10.1080/17476348.2020.170578731868041)
      Cabet F, Radoui A, Boggio D, Bellon G, Morel Y (2010) Etude du gène CFTR chez 27 patients Algeriens. Med Sci 26(139):97–101.
      Camus L, Briaud P, Vandenesch F, Moreau K (2021) How bacterial adaptation to cystic fibrosis environment shapes interactions between Pseudomonas aeruginosa and Staphylococcus aureus. Front Microbiol 12:617784. https://doi.org/10.3389/fmicb.2021.617784. (PMID: 10.3389/fmicb.2021.617784337469157966511)
      Cardines R, Giufrè M, Pompilio A, Fiscarelli E, Ricciotti G, Di Bonaventura G, Cerquetti M (2012) Haemophilus influenzae in children with cystic fibrosis: antimicrobial susceptibility, molecular epidemiology, distribution of adhesins and biofilm formation. Int J Med Microbiol 302(1):45–52. https://doi.org/10.1016/j.ijmm.2011.08.003. (PMID: 10.1016/j.ijmm.2011.08.00322001303)
      Carolus H, Van Dyck K, Van Dijck P (2019) Candida albicans and Staphylococcus species: a threatening twosome. Front Microbiol 10:18. https://doi.org/10.3389/fmicb.2019.02162. (PMID: 10.3389/fmicb.2019.02162)
      Castellani C, Massie J, Sontag M, Southern KW (2016) Newborn screening for cystic fibrosis. Lancet Respir Med 4(8):653–661. https://doi.org/10.1016/S2213-2600(16)00053-9. (PMID: 10.1016/S2213-2600(16)00053-927053341)
      Coyne K, Ashlan J, Alshaer M, Casapao AM, Venugopalan V, Isache C, Ferreira J, Jankowski CA (2022) Effectiveness and safety of beta-lactam antibiotics with and without therapeutic drug monitoring in patients with Pseudomonas aeruginosa pneumonia or bloodstream infection. Antimicrob Agents Chemother 66(10):e0064622. https://doi.org/10.1128/aac.00646-22. (PMID: 10.1128/aac.00646-22)
      Chang RY, Kyung TD, Manos J, Kutter E, Morales S, Chan H-K (2019) Bacteriophage PEV20 and ciprofloxacin combination treatment enhances removal of Pseudomonas aeruginosa biofilm isolated from cystic fibrosis and wound patients. AAPS J 21(3):49. https://doi.org/10.1208/s12248-019-0315-0. (PMID: 10.1208/s12248-019-0315-030949776)
      Chen Q, Shen Y, Zheng J (2021) A review of cystic fibrosis: basic and clinical aspects. Animal Model Exp Med 4(3):220–232. https://doi.org/10.1002/ame2.12180. (PMID: 10.1002/ame2.12180345576488446696)
      Cuthbertson L, Rogers GB, Walker AW, Oliver A, Green LE, Daniels TWV, Carroll MP, Parkhill J, Bruce KD, van der Gast CJ (2016) Respiratory microbiota resistance and resilience to pulmonary exacerbation and subsequent antimicrobial intervention. ISME J 10(5):1081–1091. https://doi.org/10.1038/ismej.2015.198. (PMID: 10.1038/ismej.2015.19826555248)
      Cystic Fibrosis Foundation (2022) Cystic fibrosis foundation patient registry, 2021 annual data report. Cyst Fibros Found Publ 2022:1–94.
      DeBoeck K (2020) Cystic fibrosis in the year 2020: a disease with a new face. Acta Paediatr 109(5):893–899. https://doi.org/10.1111/apa.15155. (PMID: 10.1111/apa.15155)
      Dedrick RM, Guerrero-Bustamante CA, Garlena RA, Russell DA, Ford K, Harris K, Gilmour KC, Soothill J, Jacobs-Sera D, Schooley RT, Hatfull GF, Spencer H (2019) Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat Med 25(5):730–733. https://doi.org/10.1038/s41591-019-0437-z. (PMID: 10.1038/s41591-019-0437-z310687126557439)
      Delhaes L, Monchy S, Fréalle E, Hubans C, Salleron J, Leroy S, Prevotat A, Wallet F, Wallaert B, Dei-Cas E, Sime-Ngando T, Chabé M, Viscogliosi E (2012) The airway microbiota in cystic fibrosis: a complex fungal and bacterial community—implications for therapeutic management. PLoS ONE 7(4):e36313. https://doi.org/10.1371/journal.pone.0036313. (PMID: 10.1371/journal.pone.0036313225584323338676)
      de Pimentel A, Fernanda FD, Camilli R, Fiscarelli E, Di Bonaventura G, Baldassarri L, Visca P, Pantosti A, Gherardi G (2014) Characterization of Streptococcus pneumoniae clones from paediatric patients with cystic fibrosis. J Med Microbiol 63(12):1704–1715. https://doi.org/10.1099/jmm.0.072199-0. (PMID: 10.1099/jmm.0.072199-0)
      De Sordi L, Mühlschlegel FA (2009) Quorum sensing and fungal-bacterial interactions in Candida albicans : a communicative network regulating microbial coexistence and virulence. FEMS Yeast Res 9(7):990–999. https://doi.org/10.1111/j.1567-1364.2009.00573.x. (PMID: 10.1111/j.1567-1364.2009.00573.x19845041)
      Díaz De Rienzo MA, Stevenson PS, Marchant R, Banat IM (2016) Pseudomonas aeruginosa biofilm disruption using microbial surfactants. J Appl Microbiol 120(4):868–876. https://doi.org/10.1111/jam.13049. (PMID: 10.1111/jam.1304926742560)
      Dixon EF, Hall RA (2015) Noisy neighbourhoods: quorum sensing in fungal-polymicrobial infections. Cell Microbiol 17(10):1431–1441. https://doi.org/10.1111/cmi.12490. (PMID: 10.1111/cmi.12490262435264973845)
      Domingue JC, Drewes JL, Merlo CA, Housseau F, Sears CL (2020) Host responses to mucosal biofilms in the lung and gut. Mucosal Immunol 13(3):413–422. https://doi.org/10.1038/s41385-020-0270-1. (PMID: 10.1038/s41385-020-0270-1321120468323778)
      Einarsson GG, Sherrard LJ, Hatch JE, Zorn B, Johnston E, McGettigan C, O’Neill K, Gilpin DF, Downey DG, Murray M, Lavelle G, McElvaney G, Wolfgang MC, Boucher R, Muhlebach MS, Ian Bradbury J, Elborn S, Tunney MM (2023) Longitudinal changes in the cystic fibrosis airway microbiota with time and treatment. J Cyst Fibros. https://doi.org/10.1016/j.jcf.2023.11.010. (PMID: 10.1016/j.jcf.2023.11.01038158284)
      Elborn JS (2016) Cystic fibrosis. The Lancet 388(10059):2519–2531. https://doi.org/10.1016/S0140-6736(16)00576-6. (PMID: 10.1016/S0140-6736(16)00576-6)
      Eroshenko D, Polyudova T, Korobov V (2017) N-Acetylcysteine inhibits growth, adhesion and biofilm formation of gram-positive skin pathogens. Microb Pathog 105:145–152. https://doi.org/10.1016/j.micpath.2017.02.030. (PMID: 10.1016/j.micpath.2017.02.03028237766)
      Esteban J, García-Coca M (2018) Mycobacterium biofilms. Front Microbiol 8:2651. https://doi.org/10.3389/fmicb.2017.02651. (PMID: 10.3389/fmicb.2017.02651294034465778855)
      E Yu, S Sharma (2023) Cystic Fibrosis.
      Fourie R, Pohl CH (2019) Beyond antagonism: the interaction between Candida species and Pseudomonas aeruginosa. J Fungi 5(2):34. https://doi.org/10.3390/jof5020034. (PMID: 10.3390/jof5020034)
      Frost F, Shaw M, Nazareth D (2021) Antibiotic therapy for chronic infection with Burkholderia cepacia complex in people with cystic fibrosis. Cochrane Database Syst Rev 2021(12):CD013079. https://doi.org/10.1002/14651858.CD013079.pub3. (PMID: 10.1002/14651858.CD013079.pub38662788)
      Gainey AB, Burch A-K, Brownstein MJ, Brown DE, Fackler J, Horne BA, Biswas B, Bivens BN, Malagon F, Daniels R (2020) Combining bacteriophages with cefiderocol and meropenem/vaborbactam to treat a pan-drug resistant Achromobacter species infection in a pediatric cystic fibrosis patient. Pediatr Pulmonol 55(11):2990–2994. https://doi.org/10.1002/ppul.24945. (PMID: 10.1002/ppul.2494532662948)
      Garczewska B, Jarzynka S, Kuś J, Skorupa W, Augustynowicz-Kopeć E (2016) Fungal infection of cystic fibrosis patients - single center experience. Adv Respir Med 84(6):151–159. https://doi.org/10.5603/PiAP.2016.0017. (PMID: 10.5603/PiAP.2016.0017)
      Gileles-Hillel A, Shoseyov D, Polacheck I, Korem M, Kerem E, Cohen-Cymberknoh M (2015) Association of chronic Candida albicans respiratory infection with a more severe lung disease in patients with cystic fibrosis. Pediatr Pulmonol 50(11):1082–1089. https://doi.org/10.1002/ppul.23302. (PMID: 10.1002/ppul.2330226383963)
      Gilpin D, Hoffman LR, Ceppe A, Muhlebach MS (2021) Phenotypic characteristics of incident and chronic mrsa isolates in cystic fibrosis. J Cyst Fibros 20(4):692–698. https://doi.org/10.1016/j.jcf.2021.05.015. (PMID: 10.1016/j.jcf.2021.05.015341032518734588)
      Govan JRW, Brown AR, Jones AM (2007) Evolving epidemiology of Pseudomonas Aeruginosa and the Burkholderia Cepacia complex in cystic fibrosis lung infection. Future Microbiol 2(2):153–164. https://doi.org/10.2217/17460913.2.2.153. (PMID: 10.2217/17460913.2.2.15317661652)
      Grainha T, Jorge P, Alves D, Lopes SP, Pereira MO (2020) Unraveling Pseudomonas aeruginosa and Candida albicans communication in coinfection scenarios: insights through network analysis. Front Cell Infect Microbiol 10:550505. https://doi.org/10.3389/fcimb.2020.550505. (PMID: 10.3389/fcimb.2020.550505332629537686562)
      Gulati M, Nobile CJ (2016) Candida albicans biofilms: development, regulation, and molecular mechanisms. Microbes Infect 18(5):310–321. https://doi.org/10.1016/j.micinf.2016.01.002. (PMID: 10.1016/j.micinf.2016.01.002268063844860025)
      Gutiérrez-Escobedo G, Hernández-Carreón O, Morales-Rojano B, Revuelta-Rodríguez B, Vázquez-Franco N, Castaño I, De LasPeñas A (2020) Candida glabrata peroxiredoxins, Tsa1 and Tsa2, and sulfiredoxin, Srx1, protect against oxidative damage and are necessary for virulence. Fungal Genet Biol 135:103287. https://doi.org/10.1016/j.fgb.2019.103287. (PMID: 10.1016/j.fgb.2019.10328731654781)
      Haiko J, Saeedi B, Bagger G, Karpati F, Özenci V (2019) Coexistence of Candida species and bacteria in patients with cystic fibrosis. Eur J Clin Microbiol Infect Dis 38(6):1071–1077. https://doi.org/10.1007/s10096-019-03493-3. (PMID: 10.1007/s10096-019-03493-3307392286520323)
      Hall RA, Turner KJ, Chaloupka J, Cottier F, De Sordi L, Sanglard D, Levin LR, Buck J, Mühlschlegel FA (2011) The quorum-sensing molecules farnesol/homoserine lactone and dodecanol operate via distinct modes of action in Candida albicans. Eukaryot Cell 10(8):1034–1042. https://doi.org/10.1128/EC.05060-11. (PMID: 10.1128/EC.05060-11216660743165441)
      Han TL, Cannon RD, Villas-Bôas SG (2011) The metabolic basis of Candida albicans morphogenesis and quorum sensing. Fungal Genet Biol 48(8):747–763. https://doi.org/10.1016/j.fgb.2011.04.002. (PMID: 10.1016/j.fgb.2011.04.00221513811)
      Harriott MM, Noverr MC (2009) Candida albicans and Staphylococcus aureus form polymicrobial biofilms: effects on antimicrobial resistance. Antimicrob Agents Chemother 53(9):3914–3922. https://doi.org/10.1128/AAC.00657-09. (PMID: 10.1128/AAC.00657-09195643702737866)
      Harrison JJ, Stremick CA, Turner RJ, Allan ND, Olson ME, Ceri H (2010) Microtiter susceptibility testing of microbes growing on peg lids: a miniaturized biofilm model for high-throughput screening. Nat Protoc 5(7):1236–1254. https://doi.org/10.1038/nprot.2010.71. (PMID: 10.1038/nprot.2010.7120595953)
      Hawver LA, Jung SA, Ng WL (2016) Specificity and complexity in bacterial quorum-sensing systemsa. FEMS Microbiol Rev 40(5):738–752. https://doi.org/10.1093/femsre/fuw014. (PMID: 10.1093/femsre/fuw014273543485007282)
      Hector A, Kirn T, Ralhan A, Graepler-Mainka U, Berenbrinker S, Riethmueller J, Hogardt M, Wagner M, Pfleger A, Autenrieth I, Kappler M, Griese M, Eber E, Martus P, Hartl D (2016) Microbial colonization and lung function in adolescents with cystic fibrosis. J Cyst Fibros 15(3):340–349. https://doi.org/10.1016/j.jcf.2016.01.004. (PMID: 10.1016/j.jcf.2016.01.00426856310)
      Hengzhuang W, Hong Wu, Ciofu O, Song Z, Høiby N (2012) In Vivo pharmacokinetics/pharmacodynamics of colistin and imipenem in Pseudomonas aeruginosa biofilm infection. Antimicrob Agents Chemother 56(5):2683–2690. https://doi.org/10.1128/AAC.06486-11. (PMID: 10.1128/AAC.06486-11223543003346607)
      Herrmann G, Yang L, Hong Wu, Song Z, Wang H, Høiby N, Ulrich M, Molin S, Riethmüller J, Döring G (2010) Colistin-tobramycin combinations are superior to monotherapy concerning the killing of biofilm Pseudomonas aeruginosa. J Infect Dis 202(10):1585–1592. https://doi.org/10.1086/656788. (PMID: 10.1086/65678820942647)
      Hirschhausen N, Block D, Bianconi I, Bragonzi A, Birtel J, Lee JC, Dübbers A, Küster P, Kahl J, Peters G, Kahl BC (2013) Extended Staphylococcus aureus persistence in cystic fibrosis is associated with bacterial adaptation. Int J Med Microbiol 303(8):685–692. https://doi.org/10.1016/j.ijmm.2013.09.012. (PMID: 10.1016/j.ijmm.2013.09.01224183484)
      Hof C, Khan MF, Murphy CD (2023) Endogenous production of 2-phenylethanol by Cunninghamella echinulata inhibits biofilm growth of the fungus. Fungal Biol 127(10–11):1384–1388. https://doi.org/10.1016/j.funbio.2023.10.001. (PMID: 10.1016/j.funbio.2023.10.00137993249)
      Hogan DA, Vik Å, Kolter R (2004) A Pseudomonas aeruginosa quorum-sensing molecule influences candida albicans morphology. Mol Microbiol 54(5):1212–1223. https://doi.org/10.1111/j.1365-2958.2004.04349.x. (PMID: 10.1111/j.1365-2958.2004.04349.x15554963)
      Høiby N, Bjarnsholt T, Moser C, Bassi GL, Coenye T, Donelli G, Hall-Stoodley L, Holá V, Imbert C, Kirketerp-Møller K, Lebeaux D, Oliver A, Ullmann AJ, Williams C (2015) ESCMID∗ guideline for the diagnosis and treatment of biofilm infections 2014. Clin Microbiol Infect 21:S1-25. https://doi.org/10.1016/j.cmi.2014.10.024. (PMID: 10.1016/j.cmi.2014.10.02425596784)
      Høiby N, Ciofu O, Bjarnsholt T (2010) Pseudomonas aeruginosa biofilms in cystic fibrosis. Future Microbiol 5(11):1663–1674. https://doi.org/10.2217/fmb.10.125. (PMID: 10.2217/fmb.10.12521133688)
      Hornby JM, Jensen EC, Lisec AD, Tasto JJ, Jahnke B, Shoemaker R, Dussault P, Nickerson KW (2001) Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl Environ Microbiol 67(7):2982–2992. https://doi.org/10.1128/AEM.67.7.2982-2992.2001. (PMID: 10.1128/AEM.67.7.2982-2992.20011142571192970)
      Horré R, Symoens F, Delhaes L, Bouchara JP (2010) Fungal respiratory infections in cystic fibrosis: a growing problem. Med Mycol 48(O1):5–7. https://doi.org/10.3109/13693786.2010.529304. (PMID: 10.3109/13693786.2010.529304)
      Islan GA, Bosio VE, Castro GR (2013) Alginate lyase and ciprofloxacin co-immobilization on biopolymeric microspheres for cystic fibrosis treatment. Macromol Biosci 13(9):1238–1248. https://doi.org/10.1002/mabi.201300134. (PMID: 10.1002/mabi.20130013423966229)
      Jabra-Rizk MA, Meiller TF, James CE, Shirtliff ME (2006) Effect of farnesol on Staphylococcus aureus biofilm formation and antimicrobial susceptibility. Antimicrob Agents Chemother 50(4):1463–1469. https://doi.org/10.1128/AAC.50.4.1463-1469.2006. (PMID: 10.1128/AAC.50.4.1463-1469.2006165698661426993)
      Jean-Pierre V, Boudet A, Sorlin P, Menetrey Q, Chiron R, Lavigne J-P, Marchandin H (2022) Biofilm formation by Staphylococcus aureus in the specific context of cystic fibrosis. Int J Mol Sci 24(1):597. https://doi.org/10.3390/ijms24010597. (PMID: 10.3390/ijms24010597366140409820612)
      Kaplan JB, LoVetri K, Cardona ST, Madhyastha S, Sadovskaya I, Jabbouri S, Izano EA (2012) Recombinant human dnase i decreases biofilm and increases antimicrobial susceptibility in Staphylococci. J Antibiot 65(2):73–77. https://doi.org/10.1038/ja.2011.113. (PMID: 10.1038/ja.2011.113)
      Karaman M, Firinci F, Karaman O, Uzuner N, Bahar IH (2013) Long-term oropharyngeal colonization by C. albicans in children with cystic fibrosis. Yeast 30(11):429–436. https://doi.org/10.1002/yea.2977. (PMID: 10.1002/yea.297723939579)
      Kasetty S, Mould DL, Hogan DA, Nadell CD (2021) Both Pseudomonas aeruginosa and Candida albicans accumulate greater biomass in dual-species biofilms under flow. Msphere 6(3):e0041621. https://doi.org/10.1128/mSphere.00416-21. (PMID: 10.1128/mSphere.00416-2134160236)
      Kennedy S, Beaudoin T, Yau YCW, Caraher E, Zlosnik JEA, Speert DP, LiPuma JJ, Tullis E, Waters V (2016) Activity of tobramycin against cystic fibrosis isolates of Burkholderia cepacia complex grown as biofilms. Antimicrob Agents Chemother 60(1):348–355. https://doi.org/10.1128/AAC.02068-15. (PMID: 10.1128/AAC.02068-1526503664)
      Khan MF, Murphy CD (2021) 3-hydroxytyrosol regulates biofilm growth in cunninghamella elegans. Fungal Biol 125(3):211–217. https://doi.org/10.1016/j.funbio.2020.10.011. (PMID: 10.1016/j.funbio.2020.10.01133622537)
      Khan MF, Saleem D, Murphy CD (2021) Regulation of Cunninghamella spp biofilm growth by tryptophol and tyrosol. Biofilm 3:100046. https://doi.org/10.1016/j.bioflm.2021.100046. (PMID: 10.1016/j.bioflm.2021.100046338989708058532)
      Kodori M, Nikmanesh B, Hakimi H, Ghalavand Z (2021) Antibiotic susceptibility and biofilm formation of bacterial isolates derived from pediatric patients with cystic fibrosis from Tehran, Iran. Arch Razi Inst 76(2):397–406. https://doi.org/10.22092/ari.2020.128554.1416. (PMID: 10.22092/ari.2020.128554.1416342237388410193)
      Kousser C, Clark C, Sherrington S, Voelz K, Hall RA (2019) Pseudomonas aeruginosa inhibits rhizopus microsporus germination through sequestration of free environmental iron. Sci Rep 9(1):5714. https://doi.org/10.1038/s41598-019-42175-0. (PMID: 10.1038/s41598-019-42175-0309529236450908)
      Kragh KN, Gijón D, Maruri A, Antonelli A, Coppi M, Kolpen M, Crone S, Tellapragada C, Hasan B, Radmer S, de Vogel C, van Wamel W, Verbon A, Giske CG, Rossolini GM, Cantón R, Frimodt-Møller N (2021) Effective antimicrobial combination in vivo treatment predicted with microcalorimetry screening. J Antimicrob Chemother 76(4):1001–1009. https://doi.org/10.1093/jac/dkaa543. (PMID: 10.1093/jac/dkaa543334427217953322)
      Krause J, Geginat G, Tammer I (2015) Prostaglandin E2 from Candida albicans stimulates the growth of Staphylococcus aureus in mixed biofilms. PLoS ONE 10(8):e0135404. https://doi.org/10.1371/journal.pone.0135404. (PMID: 10.1371/journal.pone.0135404262628434532413)
      Kukla R, Petrova P, Mazurova J (2012) Biofilm production by Staphylococcus aureus strains isolated from cystic fibrosis patients. Scientific Papers of the University of Pardubice Series A 18:37–46.
      Lababidi N, Kissi EO, Elgaher WAM, Sigal V, Haupenthal J, Schwarz BC, Hirsch AKH, Rades T, Schneider M (2019) Spray-drying of inhalable, multifunctional formulations for the treatment of biofilms formed in cystic fibrosis. J Control Release 314:62–71. https://doi.org/10.1016/j.jconrel.2019.10.038. (PMID: 10.1016/j.jconrel.2019.10.03831654686)
      Law N, Logan C, Yung G, Furr C-L, Lehman SM, Morales S, Rosas F, Gaidamaka A, Bilinsky I, Grint P, Schooley RT, Aslam S (2019) Successful adjunctive use of bacteriophage therapy for treatment of multidrug-resistant Pseudomonas aeruginosa infection in a cystic fibrosis patient. Infect 47(4):665–668. https://doi.org/10.1007/s15010-019-01319-0. (PMID: 10.1007/s15010-019-01319-0)
      Lebeaux D, Ghigo J-M, Beloin C (2014) Biofilm-related infections: bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol Mol Biol Rev 78(3):510–543. https://doi.org/10.1128/MMBR.00013-14. (PMID: 10.1128/MMBR.00013-14251845644187679)
      Leite CCF, de Freitas FAD, de Cássia Firmida M, Leão RS, Albano RM, Marques EA (2020) Analysis of airway microbiota in adults from a brazilian cystic fibrosis center. Braz J Microbiol 51(4):1747–1755. https://doi.org/10.1007/s42770-020-00381-3. (PMID: 10.1007/s42770-020-00381-3329448727688754)
      Lin Q, Pilewski JM, Di Peter Y (2021a) Acidic microenvironment determines antibiotic susceptibility and biofilm formation of Pseudomonas aeruginosa. Front Microbiol 12:747834. https://doi.org/10.3389/fmicb.2021.747834. (PMID: 10.3389/fmicb.2021.747834348678648640179)
      Lin Yu, Quan D, Chang RYK, Chow MYT, Wang Y, Li M, Morales S, Britton WJ, Kutter E, Li J, Chan H-K (2021b) Synergistic activity of phage PEV20-ciprofloxacin combination powder formulation—a proof-of-principle study in a P. aeruginosa lung infection model. Eur J Pharm Biopharm 158:166–171. (PMID: 10.1016/j.ejpb.2020.11.01933253892)
      Ling K-M, Stick SM, Kicic A (2023) Pulmonary bacteriophage and cystic fibrosis airway mucus: friends or foes? Front Med 10:1088494. https://doi.org/10.3389/fmed.2023.1088494. (PMID: 10.3389/fmed.2023.1088494)
      Liu JC, Modha DE, Gaillard EA (2013) What Is the clinical significance of filamentous fungi positive sputum cultures in patients with cystic fibrosis? J Cyst Fibros 12(3):187–193. https://doi.org/10.1016/j.jcf.2013.02.003. (PMID: 10.1016/j.jcf.2013.02.00323491855)
      Lopes SP, Ceri H, Azevedo NF, Pereira MO (2012) Antibiotic resistance of mixed biofilms in cystic fibrosis: impact of emerging microorganisms on treatment of infection. Int J Antimicrob Agents 40(3):260–263. https://doi.org/10.1016/j.ijantimicag.2012.04.020. (PMID: 10.1016/j.ijantimicag.2012.04.02022770521)
      Loumi O, Ferec C, Mercier B, Creff J, Fercot B, Denine R, Grangaud JP (2008) CFTR mutations in the Algerian population. J Cyst Fibros 7(1):54–59. https://doi.org/10.1016/j.jcf.2007.04.004. (PMID: 10.1016/j.jcf.2007.04.00417572159)
      Lu K-Y, Wagner NJ, Velez AZ, Ceppe A, Conlon BP, Muhlebach MS (2023) Antibiotic tolerance and treatment outcomes in cystic fibrosis methicillin-resistant Staphylococcus aureus infections. Microbiol Spectr 11(1):e0406122. https://doi.org/10.1128/spectrum.04061-22. (PMID: 10.1128/spectrum.04061-2236519944)
      Mahboubi MA, Carmody LA, Foster BK, Kalikin LM, VanDevanter DR, LiPuma JJ (2016) Culture-based and culture-independent bacteriologic analysis of cystic fibrosis respiratory specimens. J Clin Microbiol 54(3):613–619. https://doi.org/10.1128/JCM.02299-15. (PMID: 10.1128/JCM.02299-15266997054767965)
      Manos J (2021) Current and emerging therapies to combat cystic fibrosis lung infections. Microorganisms 9(9):1874. https://doi.org/10.3390/microorganisms9091874. (PMID: 10.3390/microorganisms9091874345767678466233)
      Martin I, Waters V, Grasemann H (2021) Approaches to targeting bacterial biofilms in cystic fibrosis airways. Int J Mol Sci 22(4):2155. https://doi.org/10.3390/ijms22042155. (PMID: 10.3390/ijms22042155336715167926955)
      Martínez-Gallardo MJ, Villicaña C, Yocupicio-Monroy M, Alcaraz-Estrada SL, León-Félix J (2023) Current knowledge in the use of bacteriophages to combat infections caused by Pseudomonas aeruginosa in cystic fibrosis. Folia Microbiol 68(1):1–16. https://doi.org/10.1007/s12223-022-00990-5. (PMID: 10.1007/s12223-022-00990-5)
      Martín-Gómez MT (2020) Taking a look on fungi in cystic fibrosis: more questions than answers. Rev Iberoam Micol 37(1):17–23. https://doi.org/10.1016/j.riam.2019.10.004. (PMID: 10.1016/j.riam.2019.10.00431928888)
      Martins M, Henriques M, Lopez-Ribot JL, Oliveira R (2012) Addition of DNase improves the in vitro activity of antifungal drugs against Candida albicans biofilms. Mycoses 55(1):80–85. https://doi.org/10.1111/j.1439-0507.2011.02047.x. (PMID: 10.1111/j.1439-0507.2011.02047.x21668524)
      MF Khan, DM Cormac (2022) Application of microbial biofilms in biocatalysis and biodegradation. J In F ” Pp. 93–118 in.
      Meskini M, Siadat SD, Seifi S, Movafagh A, Sheikhpour M (2021) An overview on the upper and lower airway microbiome in cystic fibrosis patients. Tanaffos 20(2):86–98. (PMID: 349760798710221)
      Messaoud T, Fredj SBH, Bibi A, Elion J, Ferec C, Fattoum S (2005) Molecular epidemiology of cystic fibrosis in tunisia. Ann Biol Clin 63(6):627–630.
      Messiaen A-S, Nelis H, Coenye T (2014) Investigating the role of matrix components in protection of Burkholderia cepacia complex biofilms against tobramycin. J Cyst Fibros 13(1):56–62. https://doi.org/10.1016/j.jcf.2013.07.004. (PMID: 10.1016/j.jcf.2013.07.00423932109)
      Middleton PG, Chen SCA, Meyer W (2013) Fungal infections and treatment in cystic fibrosis. Curr Opin Pulm Med 19(6):670–675. https://doi.org/10.1097/MCP.0b013e328365ab74. (PMID: 10.1097/MCP.0b013e328365ab7424060984)
      Minkiewicz-Zochniak A, Jarzynka S, Iwańska A, Strom K, Iwańczyk B, Bartel M, Mazur M, Pietruczuk-Padzik A, Konieczna M, Augustynowicz-Kopeć E, Olędzka G (2021) Biofilm formation on dental implant biomaterials by Staphylococcus aureus strains isolated from patients with cystic fibrosis. Materials 14(8):2030. https://doi.org/10.3390/ma14082030. (PMID: 10.3390/ma14082030339207438073800)
      Molina A, Del Campo R, Maiz L, Morosini MI, Lamas A, Baquero F, Canton R (2008) High prevalence in cystic fibrosis patients of multiresistant hospital-acquired methicillin-resistant Staphylococcus aureus ST228-SCCmecI capable of biofilm formation. J Antimicrob Chemother 62(5):961–967. https://doi.org/10.1093/jac/dkn302. (PMID: 10.1093/jac/dkn30218647744)
      Morales DK, Jacobs NJ, Rajamani S, Krishnamurthy M, Cubillos-Ruiz JR, Hogan DA (2010) Antifungal mechanisms by which a novel Pseudomonas aeruginosa phenazine toxin kills Candida albicans in biofilms. Mol Microbiol 78(6):1379–1392. https://doi.org/10.1111/j.1365-2958.2010.07414.x. (PMID: 10.1111/j.1365-2958.2010.07414.x21143312)
      Morelli P, De Alessandri A, Manno G, Marchese A, Bassi M, Lobello R, Minicucci L, Bandettini R (2015) Characterization of Staphylococcus aureus small colony variant strains isolated from italian patients attending a regional cystic fibrosis care centre. New Microbiol 38(2):235–243. (PMID: 25938748)
      Muthig M, Hebestreit A, Ziegler U, Seidler M, Müller F-M (2010) Persistence of Candida species in the respiratory tract of cystic fibrosis patients. Med Mycol 48(1):56–63. https://doi.org/10.3109/13693780802716532. (PMID: 10.3109/1369378080271653219184771)
      Noni M, Katelari A, Dimopoulos G, Kourlaba G, Spoulou V, Alexandrou H, Athanassoulis -, Doudounakis S-E, Tzoumaka C, Bakoula - (2014) Inhaled corticosteroids and Aspergillus fumigatus isolation in cystic fibrosis. Med Mycol 52(7):715–722. https://doi.org/10.1093/mmy/myu038. (PMID: 10.1093/mmy/myu03825056962)
      Noni M, Katelari A, Kaditis A, Theochari I, Lympari I, Alexandrou-Athanassoulis H, Doudounakis S-E, Dimopoulos G (2015) Candida albicans chronic colonisation in cystic fibrosis may be associated with inhaled antibiotics. Mycoses 58(7):416–421. https://doi.org/10.1111/myc.12338. (PMID: 10.1111/myc.1233826058475)
      Ochieng W, Wanzala P, Bii C, Oishi I, Ichimura H, Lihana R, Mpoke S, Mwaniki D, Okoth FA (2006) Tuberculosis and oral Candida species surveillance in HIV infected individuals in Northern Kenya, and the implications of tuberculin skin test screening for DOPT-P. East Afr Med J 82(12):609–613. https://doi.org/10.4314/eamj.v82i12.9365. (PMID: 10.4314/eamj.v82i12.9365)
      Olofsson A-C, Hermansson M, Elwing H (2003) N -Acetyl- l -cysteine affects growth, extracellular polysaccharide production, and bacterial biofilm formation on solid surfaces. Appl Environ Microbiol 69(8):4814–4822. https://doi.org/10.1128/AEM.69.8.4814-4822.2003. (PMID: 10.1128/AEM.69.8.4814-4822.200312902275169071)
      Pallett R, Leslie LJ, Peter A, Lambert IM, Devitt A, Marshall LJ (2019) Anaerobiosis influences virulence properties of pseudomonas aeruginosa cystic fibrosis isolates and the interaction with Staphylococcus aureus. Sci Rep 9(1):6748. https://doi.org/10.1038/s41598-019-42952-x. (PMID: 10.1038/s41598-019-42952-x310436406494883)
      Pang L, Lin H, Yang F, Deng D (2023) Editorial: mechanisms of biofilm development and antibiofilm strategies. Front Microbiol 14:1190611. https://doi.org/10.3389/fmicb.2023.1190611. (PMID: 10.3389/fmicb.2023.11906113708217810111000)
      Papenfort K, Bassler BL (2016) Quorum sensing signal-response systems in gram-negative bacteria. Nat Rev Microbiol 14(9):576–588. https://doi.org/10.1038/nrmicro.2016.89. (PMID: 10.1038/nrmicro.2016.89275108645056591)
      Papon N, Borman AM, Meyer W, Bouchara J-P (2021) Editorial: fungal respiratory infections in cystic fibrosis. Front Cell Infect Microbiol 11:800847. https://doi.org/10.3389/fcimb.2021.800847. (PMID: 10.3389/fcimb.2021.800847348588868630675)
      Patel KK, Tripathi M, Pandey N, Agrawal AK, Shilpkala Gade Md, Anjum M, Tilak R, Singh S (2019) Alginate lyase immobilized chitosan nanoparticles of ciprofloxacin for the improved antimicrobial activity against the biofilm associated mucoid P. aeruginosa infection in cystic fibrosis. Int J Pharm 563:30–42. https://doi.org/10.1016/j.ijpharm.2019.03.051. (PMID: 10.1016/j.ijpharm.2019.03.05130926526)
      Piktel E, Wnorowska U, Depciuch J, Łysik D, Cieśluk M, Fiedoruk K, Mystkowska J, Parlińska-Wojtan M, Janmey PA, Bucki R (2022) N-Acetyl-Cysteine increases activity of peanut-shaped gold nanoparticles against biofilms formed by clinical strains of Pseudomonas aeruginosa isolated from sputum of cystic fibrosis patients. Infect Drug Resist 15:851–871. https://doi.org/10.2147/IDR.S348357. (PMID: 10.2147/IDR.S348357352815768906902)
      Pompilio A, Crocetta V, Confalone P, Nicoletti M, Petrucca A, Guarnieri S, Fiscarelli E, Savini V, Piccolomini R, Di Bonaventura G (2010) Adhesion to and biofilm formation on IB3-1 bronchial cells by Stenotrophomonas maltophilia isolates from cystic fibrosis patients. BMC Microbiol 10(1):102. https://doi.org/10.1186/1471-2180-10-102. (PMID: 10.1186/1471-2180-10-102203746292858031)
      Pompilio A, Crocetta V, Ghosh D, Chakrabarti M, Gherardi G, Vitali LA, Fiscarelli E, Di Bonaventura G (2016) Stenotrophomonas maltophilia phenotypic and genotypic diversity during a 10-year colonization in the lungs of a cystic fibrosis patient. Front Microbiol 7:1551. https://doi.org/10.3389/fmicb.2016.01551. (PMID: 10.3389/fmicb.2016.01551277467705044509)
      Pompilio A, Savini V, Fiscarelli E, Gherardi G, Di Bonaventura G (2020) Clonal diversity, biofilm formation, and antimicrobial resistance among Stenotrophomonas maltophilia strains from cystic fibrosis and non-cystic fibrosis patients. Antibiotics 9(1):15. https://doi.org/10.3390/antibiotics9010015. (PMID: 10.3390/antibiotics9010015319064657168283)
      Pust M-M, Wiehlmann L, Davenport C, Rudolf I, Dittrich A-M, Tümmler B (2020) The human respiratory tract microbial community structures in healthy and cystic fibrosis infants. NPJ Biofilms Microbiomes 6(1):61. https://doi.org/10.1038/s41522-020-00171-7. (PMID: 10.1038/s41522-020-00171-7333198127738502)
      Ratbi I, Génin E, Legendre M, Le Floch A, Costa C, Cherkaoui-Deqqaqi S (2008) Cystic fibrosis carrier frequency and estimated prevalence of the disease in morocco. J Cyst Fibros 7(5):440–443. https://doi.org/10.1016/j.jcf.2007.12.006. (PMID: 10.1016/j.jcf.2007.12.00618243066)
      Ratjen A, Yau Y, Wettlaufer J, Matukas L, Zlosnik JEA, Speert DP, LiPuma JJ, Tullis E, Waters V (2015) In Vitro efficacy of high-dose tobramycin against Burkholderia cepacia complex and Stenotrophomonas maltophilia isolates from cystic fibrosis patients. Antimicrob Agents Chemother 59(1):711–713. https://doi.org/10.1128/AAC.04123-14. (PMID: 10.1128/AAC.04123-1425348526)
      Reece E, de Almeida Bettio PH, Renwick J (2021) Polymicrobial interactions in the cystic fibrosis airway microbiome impact the antimicrobial susceptibility of Pseudomonas aeruginosa. Antibiotics 10(7):827. https://doi.org/10.3390/antibiotics10070827. (PMID: 10.3390/antibiotics10070827343567478300716)
      Reen FJ, McGlacken GP, O’Gara F (2018) The expanding horizon of alkyl quinolone signalling and communication in polycellular interactomes. FEMS Microbiol Lett 365:fny076. https://doi.org/10.1093/femsle/fny076. (PMID: 10.1093/femsle/fny076)
      Resch A, Rosenstein R, Nerz C, Götz F (2005) Differential gene expression profiling of Staphylococcus aureus cultivated under biofilm and planktonic conditions. Appl Environ Microbiol 71(5):2663–2676. https://doi.org/10.1128/AEM.71.5.2663-2676.2005. (PMID: 10.1128/AEM.71.5.2663-2676.2005158703581087559)
      Rolain J-M, Hraiech S, Bregeon F (2015) Bacteriophage-based therapy in cystic fibrosis-associated Pseudomonas aeruginosa infections: rationale and current status. Drug Des Dev Ther 9:3653. https://doi.org/10.2147/DDDT.S53123. (PMID: 10.2147/DDDT.S53123)
      Saalim M, Villegas-Moreno J, Clark BR (2020) Bacterial alkyl-4-quinolones: discovery, structural diversity and biological properties. Molecules 25(23):5689. https://doi.org/10.3390/molecules25235689. (PMID: 10.3390/molecules25235689332766157731028)
      Sandri A, Haagensen JAJ, Veschetti L, Johansen HK, Molin S, Malerba G, Signoretto C, Boaretti M, Lleo MM (2021) Adaptive interactions of achromobacter spp. with Pseudomonas aeruginosa in cystic fibrosis chronic lung co-infection. Pathogens 10(8):978. https://doi.org/10.3390/pathogens10080978. (PMID: 10.3390/pathogens10080978344514428400197)
      Santos-Fernandez E, Martin-Souto L, Antoran A, Areitio M, Aparicio-Fernandez L, Bouchara J-P, Schwarz C, Rementeria A, Buldain I, Ramirez-Garcia A (2023) Microbiota and fungal-bacterial interactions in the cystic fibrosis lung. FEMS Microbiol Rev 47(3):29. https://doi.org/10.1093/femsre/fuad029. (PMID: 10.1093/femsre/fuad029)
      Sardi JCO, Scorzoni L, Bernardi T, Fusco-Almeida AM, Mendes Giannini MJS (2013) Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J Med Microbiol 62(1):10–24. https://doi.org/10.1099/jmm.0.045054-0. (PMID: 10.1099/jmm.0.045054-023180477)
      Schwarz C, Vandeputte P, Rougeron A, Giraud S, Dugé T, de Bernonville L, Duvaux AG, Alastruey-Izquierdo A, Martín-Gomez MT, Mazuelos EM, Sole A, Cano J, Pemán J, Quindos G, Botterel F, Bougnoux M-E, Chen S, Delhaès L, Favennec L, Ranque S, Sedlacek L, Steinmann J, Vazquez J, Williams C, Meyer W, Le Gal S, Nevez G, Fleury M, Papon N, Symoens F, Bouchara J-P (2018) Developing collaborative works for faster progress on fungal respiratory infections in cystic fibrosis. Med Mycol 56(1):42–59. https://doi.org/10.1093/mmy/myx106. (PMID: 10.1093/mmy/myx10629538733)
      Scoffone VC, Chiarelli LR, Trespidi G, Mentasti M, Riccardi G, Buroni S (2017) Burkholderia cenocepacia infections in cystic fibrosis patients: drug resistance and therapeutic approaches. Front Microbiol 8:1592. https://doi.org/10.3389/fmicb.2017.01592. (PMID: 10.3389/fmicb.2017.01592288787515572248)
      Sebaa S, Boucherit-Otmani Z, Courtois P (2019) Effects of tyrosol and farnesol on Candida albicans biofilm. Mol Med Rep. https://doi.org/10.3892/mmr.2019.9981. (PMID: 10.3892/mmr.2019.9981308164846423612)
      Sedarat Z, Taylor-Robinson AW (2022) Biofilm formation by pathogenic bacteria: applying a Staphylococcus aureus model to appraise potential targets for therapeutic intervention. Pathogens 11(4):388. https://doi.org/10.3390/pathogens11040388. (PMID: 10.3390/pathogens11040388354560639027693)
      Semler DD, Goudie AD, Finlay WH, Dennis JJ (2014) Aerosol phage therapy efficacy in Burkholderia cepacia complex respiratory infections. Antimicrob Agents Chemother 58(7):4005–4013. https://doi.org/10.1128/AAC.02388-13. (PMID: 10.1128/AAC.02388-13247982684068594)
      Sharma A, Kumar D, Dahiya K, Hawthorne S, Jha SK, Jha NK, Nand P, Girgis S, Raj S, Srivastava R, Goswami VK, Gregoriou Y, El-Zahaby SA, Ojha S, Dureja H, Gupta G, Singh S, Chellappan DK, Dua K (2021) Advances in pulmonary drug delivery targeting microbial biofilms in respiratory diseases. Nanomedicine 16(21):1905–1923. https://doi.org/10.2217/nnm-2021-0057. (PMID: 10.2217/nnm-2021-005734348474)
      Sharma K, Singh AP (2018) Antibiofilm effect of dnase against single and mixed species biofilm. Foods 7(3):42. https://doi.org/10.3390/foods7030042. (PMID: 10.3390/foods7030042295627195867557)
      Shirtliff ME, Peters BM, Jabra-Rizk MA (2009) Cross-kingdom interactions: Candida albicans and bacteria. FEMS Microbiol Lett 299(1):1–8. https://doi.org/10.1111/j.1574-6968.2009.01668.x. (PMID: 10.1111/j.1574-6968.2009.01668.x19552706)
      Singh A, Ralhan A, Schwarz C, Hartl D, Hector A (2018) Fungal pathogens in CF airways: leave or treat? Mycopathologia 183(1):119–137. https://doi.org/10.1007/s11046-017-0184-y. (PMID: 10.1007/s11046-017-0184-y28770417)
      Singh S, Datta S, Narayanan KB, Narayanan Rajnish K (2021) Bacterial exo-polysaccharides in biofilms: role in antimicrobial resistance and treatments. J Genet Eng Biotechnol 19(1):140. https://doi.org/10.1186/s43141-021-00242-y. (PMID: 10.1186/s43141-021-00242-y345579838460681)
      Singkum P, Muangkaew W, Suwanmanee S, Pumeesat P, Wongsuk T, Luplertlop N (2019) Suppression of the Pathogenicity of Candida albicans by the quorum-sensing molecules farnesol and tryptophol. J Gen Appl Microbiol 65(6):277–283. https://doi.org/10.2323/jgam.2018.12.002. (PMID: 10.2323/jgam.2018.12.00231217414)
      Spencer HK, Spitznogle SL, Borjan J, Aitken SL (2020) An overview of the treatment of less common non–lactose-fermenting gram-negative bacteria. Pharmacotherapy 40(9):936–951. https://doi.org/10.1002/phar.2447. (PMID: 10.1002/phar.244732687670)
      Staerck C, Landreau A, Herbette G, Roullier C, Bertrand S, Siegler B, Larcher G, Bouchara J-P, Fleury MJJ (2017) The secreted polyketide boydone a is responsible for the anti-Staphylococcus aureus activity of scedosporium boydii. FEMS Microbiol Lett 364(22):146. https://doi.org/10.1093/femsle/fnx223. (PMID: 10.1093/femsle/fnx223)
      Starner TD, Zhang N, Kim GH, Apicella MA, McCray PB (2006) Haemophilus influenzae forms biofilms on airway epithelia. Am J Respir Crit Care Med 174(2):213–220. https://doi.org/10.1164/rccm.200509-1459OC. (PMID: 10.1164/rccm.200509-1459OC166757782662906)
      Stewart PS, Zhang T, Ruifang Xu, Pitts B, Walters MC, Roe F, Kikhney J, Moter A (2016) Reaction–diffusion theory explains hypoxia and heterogeneous growth within microbial biofilms associated with chronic infections. NPJ Biofilms Microbiomes 2(1):16012. https://doi.org/10.1038/npjbiofilms.2016.12. (PMID: 10.1038/npjbiofilms.2016.12287212485515263)
      Sudfeld CR, Dasenbrook EC, Merz WG, Carroll KC, Boyle MP (2010) Prevalence and risk factors for recovery of filamentous fungi in individuals with cystic fibrosis. J Cyst Fibros 9(2):110–116. https://doi.org/10.1016/j.jcf.2009.11.010. (PMID: 10.1016/j.jcf.2009.11.01020045384)
      Suk JS, Lai SK, Boylan NJ, Dawson MR, Boyle MP, Hanes J (2011) Rapid transport of muco-inert nanoparticles in cystic fibrosis sputum treated with N-acetyl cysteine. Nanomedicine 6(2):365–375. https://doi.org/10.2217/nnm.10.123. (PMID: 10.2217/nnm.10.12321385138)
      Taccetti G, Francalanci M, Pizzamiglio G, Messore B, Carnovale V, Cimino G, Cipolli M (2021) Cystic fibrosis: recent insights into inhaled antibiotic treatment and future perspectives. Antibiotics 10(3):338. https://doi.org/10.3390/antibiotics10030338. (PMID: 10.3390/antibiotics10030338338101168004710)
      Tan X, Coureuil M, Ramond E, Euphrasie D, Dupuis M, Tros F, Meyer J, Nemazanyy I, Chhuon C, Guerrera IC, Ferroni A, Sermet-Gaudelus I, Nassif X, Charbit A, Jamet A (2019) Chronic Staphylococcus aureus lung infection correlates with proteogenomic and metabolic adaptations leading to an increased intracellular persistence. Clin Infect Dis 69(11):1937–1945. https://doi.org/10.1093/cid/ciz106. (PMID: 10.1093/cid/ciz10630753350)
      Tängdén T (2014) Combination antibiotic therapy for multidrug-resistant gram-negative bacteria. Upsala J Med Sci 119(2):149–153. https://doi.org/10.3109/03009734.2014.899279. (PMID: 10.3109/03009734.2014.899279246662234034552)
      Tasneem U, Yasin N, Nisa I, Shah F, Rasheed U, Momin F, Zaman S, Qasim M (2018) Biofilm producing bacteria: a serious threat to public health in developing countries. Journal of Food Science and Nutrition 01(02):25–31. https://doi.org/10.35841/food-science.1.2.25-31. (PMID: 10.35841/food-science.1.2.25-31)
      Taylor-Cousar JL (2020) CFTR modulators: impact on fertility, pregnancy, and lactation in women with cystic fibrosis. J Clin Med 9(9):2706. https://doi.org/10.3390/jcm9092706. (PMID: 10.3390/jcm9092706328257667563981)
      Tetz G, Cynamon M, Hendricks G, Vikina D, Tetz V (2017) In vitro activity of a novel compound, Mul-1867, against clinically significant Fungi Candida spp. and Aspergillus spp. Int J Antimicrob Agents 50(1):47–54. https://doi.org/10.1016/j.ijantimicag.2017.02.011. (PMID: 10.1016/j.ijantimicag.2017.02.01128457835)
      Todd OA, Peters BM (2019) candida albicans and Staphylococcus aureus pathogenicity and polymicrobial interactions lessons beyond koch’s postulates. Journal of Fungi 5(3):81. https://doi.org/10.3390/jof5030081. (PMID: 10.3390/jof5030081314877936787713)
      Treffon J, Fotiadis SA, van Alen S, Becker K, Kahl BC (2020) The virulence potential of livestock-associated methicillin-resistant staphylococcus aureus cultured from the airways of cystic fibrosis patients. Toxins 12(6):360. https://doi.org/10.3390/toxins12060360. (PMID: 10.3390/toxins12060360324862477354617)
      Trivedi A, Mavi PS, Bhatt D, Kumar A (2016) Thiol reductive stress induces cellulose-anchored biofilm formation in mycobacterium tuberculosis. Nat Commun 7(1):11392. https://doi.org/10.1038/ncomms11392. (PMID: 10.1038/ncomms11392271099284848537)
      Valenza G, Tappe D, Turnwald D, Frosch M, König C, Hebestreit H, Abele-Horn M (2008) Prevalence and antimicrobial susceptibility of microorganisms isolated from sputa of patients with cystic fibrosis. J Cyst Fibros 7(2):123–127. https://doi.org/10.1016/j.jcf.2007.06.006. (PMID: 10.1016/j.jcf.2007.06.00617693140)
      VandenBranden SL, McMullen A, Schechter MS, Pasta DJ, Michaelis RL, Konstan MW, Wagener JS, Morgan WJ, McColley SA (2012) Lung function decline from adolescence to young adulthood in cystic fibrosis. Pediatr Pulmonol 47(2):135–143. https://doi.org/10.1002/ppul.21526. (PMID: 10.1002/ppul.2152622241571)
      Vila T, Kong EF, Ibrahim A, Piepenbrink K, Shetty AC, McCracken C, Bruno V, Jabra-Rizk MA (2019) Candida albicans quorum-sensing molecule farnesol modulates staphyloxanthin production and activates the thiol-based oxidative-stress response in Staphylococcus aureus. Virulence 10(1):625–642. https://doi.org/10.1080/21505594.2019.1635418. (PMID: 10.1080/21505594.2019.1635418312806536629188)
      Wahab AA, Taj-Aldeen SJ, Kolecka A, ElGindi M, Finkel JS, Boekhout T (2014) High prevalence of Candida dubliniensis in lower respiratory tract secretions from cystic fibrosis patients may be related to increased adherence properties. Int J Infect Dis 24:14–19. https://doi.org/10.1016/j.ijid.2014.03.1380. (PMID: 10.1016/j.ijid.2014.03.138024780917)
      Wang M, Ridderberg W, Hansen CR, Høiby N, Jensen-Fangel S, Olesen HV, Skov M, Lemming LE, Pressler T, Johansen HK, Nørskov-Lauritsen N (2013) Early treatment with inhaled antibiotics postpones next occurrence of achromobacter in cystic fibrosis. J Cyst Fibros 12(6):638–643. https://doi.org/10.1016/j.jcf.2013.04.013. (PMID: 10.1016/j.jcf.2013.04.01323727271)
      Waters V, Ratjen F (2012) Standard versus Biofilm antimicrobial susceptibility testing to guide antibiotic therapy in cystic fibrosis. In: Chichester VW (ed) Cochrane database of systematic reviews. UK, John Wiley & Sons Ltd.
      Welch M, O’Brien TJ, Hassan MM, Harrison F (2021) An in vitro model for the cultivation of polymicrobial biofilms under continuous-flow conditions. F1000 Research 10:801. https://doi.org/10.12688/f1000research.55140.1. (PMID: 10.12688/f1000research.55140.1345572938442117)
      Wieneke MK, Dach F, Neumann C, Görlich D, Kaese L, Thißen T, Dübbers A, Kessler C, Große-Onnebrink J, Küster P, Schültingkemper H, Schwartbeck B, Roth J, Nofer J-R, Treffon J, Posdorfer J, Boecken JM, Strake M, Abdo M, Westhues S, Kahl BC (2021) Association of diverse Staphylococcus aureus populations with Pseudomonas aeruginosa coinfection and inflammation in cystic fibrosis airway infection. Msphere 6(3):e0035821. https://doi.org/10.1128/mSphere.00358-21. (PMID: 10.1128/mSphere.00358-2134160233)
      Worlitzsch D, Tarran R, Ulrich M, Schwab U, Cekici A, Meyer KC, Birrer P, Bellon G, Berger J, Weiss T, Botzenhart K, Yankaskas JR, Randell S, Boucher RC, Döring G (2002) Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J Clin Investig 109(3):317–325. https://doi.org/10.1172/JCI13870. (PMID: 10.1172/JCI1387011827991150856)
      Wu X, Wang H, Xiong J, Yang G-X, Jin-Feng Hu, Zhu Q, Chen Z (2024) Staphylococcus aureus biofilm: formulation, regulatory, and emerging natural products-derived therapeutics. Biofilm 7:100175. https://doi.org/10.1016/j.bioflm.2023.100175. (PMID: 10.1016/j.bioflm.2023.1001753829883210827693)
      Yu Q, Griffin EF, Moreau-Marquis S, Schwartzman JD, Stanton BA, O’Toole GA (2012) In vitro evaluation of tobramycin and aztreonam versus Pseudomonas aeruginosa biofilms on cystic fibrosis-derived human airway epithelial cells. J Antimicrob Chemother 67(11):2673–2681. https://doi.org/10.1093/jac/dks296. (PMID: 10.1093/jac/dks296228438343468082)
      Zemanick ET, Wagner BD, Robertson CE, Ahrens RC, Chmiel JF, Clancy JP, Gibson RL, Harris WT, Kurland G, Laguna TA, McColley SA, McCoy K, Retsch-Bogart G, Sobush KT, Zeitlin PL, Stevens MJ, Accurso FJ, Sagel SD, Kirk Harris J (2017) Airway microbiota across age and disease spectrum in cystic fibrosis. Eur Respir J 50(5):1700832. https://doi.org/10.1183/13993003.00832-2017. (PMID: 10.1183/13993003.00832-2017291466015935257)
      Zhao A, Bodine SP, Xie Q, Wang B, Ram G, Novick RP, Muir TW (2022) Reconstitution of the S. aureus agr quorum sensing pathway reveals a direct role for the integral membrane protease mroq in pheromone biosynthesis. Proc Natl Acad Sci 119(33):e2202661119. https://doi.org/10.1073/pnas.2202661119. (PMID: 10.1073/pnas.2202661119359396689388083)
      Zhao T, Liu Y (2010) N-Acetylcysteine inhibit biofilms produced by Pseudomonas aeruginosa. BMC Microbiol 10(1):140. https://doi.org/10.1186/1471-2180-10-140. (PMID: 10.1186/1471-2180-10-140204624232882372)
    • Contributed Indexing:
      Keywords: Candida spp.; Antimicrobial resistance; Bacteria; Cystic fibrosis; Mixed biofilm
    • Accession Number:
      0 (Anti-Bacterial Agents)
    • Publication Date:
      Date Created: 20240511 Date Completed: 20240511 Latest Revision: 20240511
    • Publication Date:
      20240512
    • Accession Number:
      10.1007/s00203-024-03967-9
    • Accession Number:
      38734793